
Universidade Federal de Pernambuco
Centro de Ciências Exatas e da Natureza

Centro de Informática - CIn

Pós-graduação em Ciência da Computação

ANALYSING FEATURE DEPENDENCIES IN
PREPROCESSOR-BASED SYSTEMS

Felipe Buarque de Queiroz

DISSERTAÇÃO DE MESTRADO

Recife
24 de Agosto de 2012

Universidade Federal de Pernambuco
Centro de Ciências Exatas e da Natureza

Centro de Informática - CIn

Felipe Buarque de Queiroz

ANALYSING FEATURE DEPENDENCIES IN
PREPROCESSOR-BASED SYSTEMS

Trabalho apresentado ao Programa de Pós-graduação em

Ciência da Computação do Centro de Informática - CIn

da Universidade Federal de Pernambuco como requisito

parcial para obtenção do grau de Mestre em Ciência da

Computação.

Orientador: Prof. Dr. Sérgio Castelo Branco Soares

Recife
24 de Agosto de 2012

 Catalogação na fonte

Bibliotecária Jane Souto Maior, CRB4-571

Queiroz, Felipe Buarque de
 Analysing feature dependencies in preprocessor-based
systems. / Felipe Buarque de Queiroz. - Recife: O Autor,
2012.
 xiv, 67 p.: il., fig., tab.

 Orientador: Sérgio Castelo Branco Soares.
 Dissertação (mestrado) - Universidade Federal de
Pernambuco. CIn, Ciência da Computação, 2012.

 Inclui bibliografia e apêndice.

 1. Engenharia de software. 2. Linhas de produto de software. I.
Soares, Sérgio Castelo Branco (orientador). II. Título.

 005.1 CDD (23. ed.) MEI2012 – 173

To my grandfather.

AGRADECIMENTOS

Agradeço e dedico este trabalho às pessoas mais importantes de minha vida: minha mãe

Rosa, por seu amor incondicional, pelo carinho, afeto e sábias palavras nos momentos

dif́ıceis de minha jornada; meu pai Alano, pelo constante incentivo e preocupação com

o homem e profissional que tenho me tornado; e minha irmã Alana, pelos poucos mas

cruciais momentos de conversa e palavras de apoio. Amo vocês!

À minha namorada Raquel, por conseguir aturar as minhas chatices e mudanças de

humor durante a realização deste trabalho. Obrigado por estar sempre ao meu lado,

mesmo estando a mais de 400 km de distância na maior parte do tempo.

Ao professor e orientador Sérgio Soares, não apenas pelos conselhos e dicas valiosas

que me ajudaram a conduzir esta pesquisa, mas pelo companheirismo e compreensão nos

momentos complicados no decorrer do desenvolvimento deste trabalho.

Aos professores Fernando Castor e Uirá Kulesza, pelos valiosos comentários, que em

muito enriqueceram este trabalho. Obrigado pelas cŕıticas, sugestões e questionamentos,

os quais serão bastante úteis para a realização de futuras pesquisas.

Aos amigos feitos durante o mestrado, em especial Liliane, Salânio, Henrique e Márcio,

este último pelas intensas discussões e pelo constante apoio e incentivo, sem os quais este

trabalho não poderia ter sido conclúıdo. Agradeço também aos demais membros do SPG,

bem como a participação nas valiosas discussões semanais realizadas no GENTeS.

Aos amigos que dividiram apartamento, em especial Fernando Kenji Kamei, Leonardo

Fernandes e Raphael Borborema, os quais pude compartilhar momentos de stress e de-

scontração durante os 2 anos e meio de realização deste trabalho.

À BankSystem Software Builder pela compreensão e flexibilidade no cumprimento

de minha jornada diária de trabalho, a qual tive de compartilhar para a conclusão desta

pesquisa. Além disso, às amizades constrúıdas na empresa, em especial Henrique Seabra e

Filipe Andrade, pelas discussões e momentos de aprendizado e descontração em conjunto.

Finalmente, agradeço à FAPEAL por financiar minha pesquisa.

iv

Go ahead and burn your bridges

But only if you can swim

Deep in the sea of disbelief

This time your screams won’t be heard.

—DEATH TO TRAITORS (Beloved, 2003)

RESUMO

O conceito de Linha de Produtos de Software (LPS) tem se consolidado ao longo dos

últimos anos como sendo efetivo para lidar com o reuso de componentes de software em

larga escala, quando existe uma forte necessidade de customizações em uma famı́lia de

aplicações. Diversas abordagens, como a utilização de pré-processadores, são levadas em

consideração para implementar features em uma LPS. Features são abstrações essenciais

que tanto os clientes quanto os desenvolvedores conseguem entender. Elas representam

aspectos, qualidades ou caracteŕısticas distintas importantes de um sistema.

Features usualmente compartilham elementos como variáveis e métodos entre si, o

que leva à ocorrência de dependências a ńıvel de código. Tais dependências podem ser

caracterizadas como quando uma feature declara uma variável utilizada por outra feature.

Assim, quando se está mantendo uma LPS, desenvolvedores estão sujeitos a manter uma

feature e causar problemas em outra(s).

Visto isso, este trabalho busca entender a ocorrência de dependências entre features de

uma LPS que utilizam-se de pré-processadores para implementar variabilidade. Seguindo

guias de mapeamentos sistemáticos, foi realizada uma revisão da literatura onde foram

identificados os principais estudos sobre o uso de pré-processadores em LPS. Com isso,

foi posśıvel realizar três estudos sobre a ocorrência de dependências em LPS, onde 45

LPS reais foram avaliadas. Os dois primeiros estudos são relacionados à ocorrência de

dependências intraprocedurais, ou seja, a ocorrência de dependências entre features den-

tro dos métodos de um projeto. No primeiro, o interesse era em saber a frequência da

ocorrência de dependências entre features nos projetos. Verificou-se que 7.61% ± 7.22%

dos métodos dos projetos utilizam diretivas de preprocessamento e que 72.49%± 17.69%

dos métodos com diretivas contém dependências. No segundo estudo, o interesse con-

siste em saber se existe correlação entre complexidade e dependências entre features,

bem como onde tais dependências ocorrem. Através dos valores das correlações entre as

métricas relacionadas a complexidade, pudemos concluir que quanto maior a complexi-

dade, maior o número de dependências entre features nos projetos. Em relação a onde

tais dependências ocorrem, verificou-se que, em média, 48.8% das dependências ocor-

rem quando se utiliza a diretiva #if. O terceiro estudo complementa os dois primeiros

vi

RESUMO vii

através de uma análise interprocedural, onde é comparado o esforço quando se utiliza

ou não a abordagem de interfaces emergentes para realizar tarefas de manutenção em

LPS. Para isso, nós medimos o esforço através do número de fragmentos e do número de

features que o desenvolvedor teria de analisar para realizar a manutenção de uma variável

compartilhada ao longo de várias features envolvidas em dependências interprocedurais.

Verificou-se que desenvolvedores tem um ganho de 56.28%±21.70% em relação ao número

de fragmentos e 46.29%±19.73% em relação ao número de features que é preciso analisar

quando se utiliza interfaces emergentes.

Com o resultado das análises, uma grande quantidade de dados foi disponibilizada, a

qual pode ser utilizada como entrada por pesquisadores em seus estudos, como projetos

de linguagens de programação e ferramentas de suporte a pré-processadores.

Palavras-chave: Linhas de Produto de Software, Pré-processador, Compilação Condi-

cional.

ABSTRACT

The concept of Software Product Lines (SPL) has been consolidated over the past year as

being effective for dealing with the reuse of software components on a large scale, when

there is a strong need for customization in a family of applications. Several approaches,

such as the use of preprocessors, are taken into account to implement features in a SPL.

Features are essential abstractions that both customers and developers can understand.

They represent aspects, qualities or important characteristics for a system.

Features usually share variables and methods with each other, which leads to the

occurrence of dependencies at code level. These dependencies can be characterized when

one declares a variable in a feature and this variable is used by another feature. So when

developers are maintaining a SPL, they are subject to modify one feature and cause

problems on other(s).

Thus, this work aims to understand the occurrence of dependencies between features

of SPL that use preprocessor mechanisms to implement variability. Following system-

atic mapping guidelines, we conducted a literature review when the main studies on the

preprocessor usage in SPL were identified. It was then possible to conduct three studies

on the occurrence of feature dependencies in SPL, where 45 real SPLs were evaluated.

The first two studies are related to the occurrence of intraprocedural dependencies, in

other words, the occurrence of dependencies between features into projects methods. In

the first, we are concerned to know the frequency of occurrence of dependencies between

projects features. We found that 7.61% ± 7.22% of projects methods used preprocessor

directives and that 72.49%±17.69% of these methods with directives have dependencies.

On the second one, we are concerned to know if there are correlation between complexity

and feature dependencies, and where feature dependencies occur. Through the correlation

values between the complexity metrics, we can conclude that the higher the complexity,

the greater the number of feature dependencies in projects. Regarding where the de-

pendencies occur, we found that, in average, 48.8% of dependencies occur through the

use of #if directive. The third study complements the other two through an interpro-

cedural analysis, where we compare the effort to perform SPL maintenance tasks when

emergent interfaces approach is used or not. To do this, we measure the effort through

viii

ABSTRACT ix

the number of fragments and number of features that the developer needs to analyze to

maintain a variable shared across features involved in interprocedural dependencies. We

found that developers have a gain about 56.28%± 21.70% over the number of fragments

and 46.29%± 19.73% over the number of features that need to analyze when he is using

emergent interfaces approach.

From the analysis results, we provide a large amount of data, which can be used as in-

put by researchers in their studies regarding programming languages ââand preprocessors

tools support.

Keywords: Software Product Lines, Preprocessor, Conditional Compilation.

CONTENTS

Chapter 1—Introduction 1

1.1 Summary of Goals . 3

1.2 Outline . 3

Chapter 2—Background 5

2.1 Software Product Lines . 5

2.2 Conditional Compilation . 8

2.3 Software Metrics . 10

2.4 Software Maintenance and Evolution . 12

Chapter 3—Literature Review 15

3.1 Review Protocol . 16

3.1.1 Search Process . 16

3.1.2 Research Questions . 17

3.1.3 Keywords & Search Terms . 17

3.1.4 Inclusion & Exclusion Criteria . 18

3.1.5 Data Extraction . 19

3.2 Execution . 20

3.3 Results . 20

3.3.1 Overview . 21

3.3.2 RQ1 - Research Topics . 22

3.3.3 RQ2 - Kinds of Evaluation . 27

3.3.4 RQ3 - Main Results . 29

3.3.5 Other Results . 32

3.4 Limitations . 32

3.5 Summary . 33

x

CONTENTS xi

Chapter 4—Dependency Analysis 34

4.1 Feature Dependencies . 34

4.2 Empirical Studies . 37

4.2.1 Sample Projects & Collecting Data 38

4.2.2 Metrics . 39

4.2.3 First Study: Frequency of Feature Dependencies Occurrence . . . 42

4.2.4 Second Study: Complexity and Feature Dependencies 43

4.2.5 Third Study: Interprocedural Analysis 46

4.2.6 Threats to Validity . 48

4.3 Summary . 49

Chapter 5—Concluding remarks 53

5.1 Contributions . 54

5.2 Related Work . 54

5.3 Future Work . 57

Appendices 59

A.1 Primary Studies . 59

LIST OF FIGURES

2.1 Different models of mobile phones . 6

3.1 Search process and it steps . 16

3.2 Distribution of relevant studies by search engine 21

3.3 Number of relevant studies by year . 21

3.4 Distribution of relevant studies by country 22

4.1 Overview for the process of projects data generation 39

4.2 Correlations between NoM and NoDe, and SLoC and NoDe metrics . . . 44

4.3 Correlation between NoFE and NoDe metrics 45

4.4 Correlation between NoKDi and NoDe metrics 45

xii

LIST OF TABLES

3.1 Keywords and their derived words . 18

3.2 Summary of execution data . 20

3.3 Authors who have published more than one paper about conditional com-

pilation use . 22

3.4 Summary of papers by research topic . 23

3.5 Summary of main tool developed/used on research papers 32

4.1 Classification of correlation values. 42

4.2 Dependency occurrence on cpp’s variability mechanisms 46

4.3 Data Analysis - Part I. 50

4.4 Data Analysis - Part II. 51

4.5 Data Analysis - Part III. 52

xiii

LIST OF LISTINGS

2.1 Conditional compilation use on mobile game. 9

2.2 Conditional compilation use on Linux Kernel. 9

4.1 Feature dependency occurrence on Vim text editor. 35

4.2 Feature dependency occurrence on Kernel Linux. 36

4.3 Feature dependency occurrence on Irssi. 37

4.4 Interprocedural Feature dependency occurrence on Clamav. 47

xiv

CHAPTER 1

INTRODUCTION

The notion of Software Product Lines (SPL) has been established over the past years as

being effective in dealing with the reuse of software components on a large scale, when

there is a strong need for customization in a family of applications of the same organiza-

tion. Several approaches to develop SPL have been proposed in recent years and recent

studies exhibit a growing interest in their industrial use. A wide variety of companies

already has substantially decreased their costs with software development, maintenance

and time to market, and increased the quality of their software products [Bos02].

A product line may be considered a family of software systems developed from reusable

assets underlying the same architecture (known as core assets). By reusing assets, it is

possible to construct products through features defined according to customers’ require-

ments.On the other hand, implementation activities become more complex because they

also have to realize variabilities. The product line systems share a common set of features

that satisfy the needs of a particular market segment [CN02]. In this context, features

are the semantic units by which we can differentiate programs in an SPL [TBD06].

Reasoning about how to combine both core assets and product variabilities is a chal-

lenging task [GA01]. In other words, the challenge consists of understanding the available

mechanisms for realizing variability and knowing which of them fits best for a given vari-

ability at hand [KLM+97]. One of these mechanisms is the use of preprocessors to imple-

ment features of an SPL. This technique consists of associating conditional compilation

directives like #ifdef and #endif to encompass the feature code. The use of conditional

compilation to implement variability on programs occurs, in part, due to C preprocessor

(cpp) popularity. cpp is a tool developed to provide better support to metaprogramming

capabilities of C language, including, among other features, the definition of conditional

code fragments. Because it is a command line-based tool, cpp may be used with any text

artifact, including other programming languages such as Java and C#.

In order to know about the relevant studies on preprocessor usage, we perform a

literature review based on systematic mapping features. We defined a review proto-

col, specified the research questions and the methods that were used to undertake the

mapping. Through the results, we could notice that despite their widespread use to

1

INTRODUCTION 2

implement SPL features [AJC+05, KAK08, KMPY05], preprocessors have several draw-

backs, including no support for separation of concerns [SC92]. This has a direct impact

on software modularity, which can negatively influence aspects like comprehensibility and

changeability [Par72], and consequently, maintainability and evolution.

Modularity problems caused by preprocessor use arise because of shared elements

among features such as variables and methods. Sharing these elements may lead to

occurrence of dependencies between features. Feature dependencies occur like when a

feature assigns a value to a variable which is subsequently used by another feature, or

when a variable is instantiated on a feature and used by another ones. Furthermore,

functional dependencies among features imply that only certain combinations of variant

features may coexist in any given system release [Jar07]. Insufficient information about

such dependency rules might cause behavioral problems during SPL maintenance and

evolution, since the programmer may not be aware of them.

In order to understand the occurrence of feature dependencies on SPLs, we define a

set of software metrics regarding preprocessor usage and develop a tool to compute these

metrics. The tool, named pl-stats, is able to compute the defined metrics on source

code which uses preprocessor directives to implement variability. We collect data from

the source code of 45 software projects of different domains, sizes and languages. In terms

of complexity, these projects vary from simple and small, such as MPSolve, to complex

and very large ones, such as the Linux Kernal.

Based on the collected data, we perform three studies regarding the occurrence of

feature dependencies on SPL. The first two studies relate to the occurrence of intraproce-

dural dependencies, i.e. occurrence of feature dependencies within project methods. On

the first one, we are interested on frequency of occurrence of feature dependencies on these

projects. We found that 7.61%± 7.22% of the projects methods use preprocessor direc-

tives and that 72.49%±17.69% of the methods with directives have dependencies. On the

second one, we are interested in knowing if there is a correlation between software com-

plexity and feature dependencies, and where these feature dependencies occur. Through

the correlation values between the metrics regarding complexity, we might conclude the

higher the complexity the greater the number of feature dependencies. Regarding where

feature dependencies occur, we found that, on average, 48.8% of dependencies occur when

using #if directive. The third study complements the first two through an interprocedu-

ral analysis, where we compare the effort to maintain dependent features using emergent

interfaces and non emergent interfaces approaches in SPLs. We found that, when using

emergent interfaces approach, developers has a gain of 56.28% ± 21.70% related to the

1.1 SUMMARY OF GOALS 3

number of fragments and 46.29%± 19.73% related to the number of features they would

have to analyze, compared to not using emergent interfaces.

In summary, this work present an initial assessment on feature dependencies occur-

rence in preprocessor-based systems, providing a large dataset regarding preprocessor

usage and feature dependencies on software projects from different domains, sizes and

languages. Furthermore, we develop a tool to compute a set of metrics regarding prepro-

cessor usage on software projects, more specifically regarding the occurrence of simple

dependencies on software projects. Finally, we present a mapping study regarding pre-

processor usage on software projects. As the study was conducted following systematic

mapping features, this allow other researchers to replicate it, adjusting some variables,

like the terms of the search string, according the goals of their researches.

In what follows, we present the summary of goals and the organization of this work.

1.1 SUMMARY OF GOALS

Based on the problems mentioned above, the main goal of this work is to show how feature

dependencies occur on practice. We are interested on evaluate the use of conditional

compilation mechanisms in the implementation of preprocessor-based product lines, more

specifically, understanding the occurrence of code level feature dependencies regarding

these mechanisms.

The specific goals of this work are:

� to perform a mapping study regarding the use of conditional compilation capabilities

to implement variability;

� to develop a tool to sample data regarding feature dependencies on projects that

use conditional compilation mechanisms; and

� to provide empirical data about feature dependencies on real software projects which

use conditional compilation mechanisms to implement variability, performing an

initial assessment regarding their occurrence.

1.2 OUTLINE

The remainder of this dissertation is organized as follows:

� Chapter 2 reviews the essential concepts used throughout the work: Software Prod-

uct Lines, Conditional Compilation, Software Metrics and Software Maintenance

and Evolution;

1.2 OUTLINE 4

� Chapter 3 presents a mapping study about the usage of conditional compilation

mechanisms, identifying the relevant studies about that, showing the main results

and pointing some research gaps which can be explored by researchers on other

works;

� Chapter 4 presents our studies about feature dependencies: we state our assump-

tions, describe the mechanism used to sample data about the projects and present

the empirical studies, defining their research questions and discussing their results;

� Chapter 5 describes the concluding remarks, discussing our contributions, the re-

lated work and the future work.

CHAPTER 2

BACKGROUND

In this chapter we review essential concepts explored in this work. We discuss concepts

related to Software Product Lines (SPL) in Section 2.1. In this context, in order to

understand how variability is applied by preprocessors in SPL, we discuss the concepts

and show examples of the use of conditional compilation mechanisms on Section 2.2.

Next, we present the concepts of software metrics in Section 2.3, which were used to

understand and define the metrics used in this work. Last, software maintenance and

evolution are discussed in Section 2.4. This topic is important for this work since some

drawbacks of preprocessor use during SPL maintenance and evolution have been discussed

in the literature [KS94, SC92, Fav96].

2.1 SOFTWARE PRODUCT LINES

One increasing trend in software development is the need to develop multiple similar

software products instead of just a single individual product. There are several reasons

for this. For instance, products that are being developed for the international market must

be adapted for different legal or cultural environments, as well as for different languages,

and so must provide adapted user interfaces. Because of cost and time constraints it is

not possible for software developers to develop a new product from scratch for each new

customer, and so software reuse must be promoted.

Suppose that a company acquires a new project to start the development of a mobile

game. To reach a large number of users, the game must work on different mobile phones.

Even though it is a single game, there will be many different versions of it running on

many different mobile phones. Due to particular restrictions and API specification of

each phone, there are differences that must be taken into account. For example, consider

the three mobile phones showed in Figure 2.1. The first phone on the left has a screen

resolution of 160x128, while the phone on the right has 1920x1080.

A possible way to address this and other variations, such as amount of available

memory, keyboard, sound API and others, is to develop each product separately. This

way, we are able to target the specific needs and restrictions of each phone. However,

5

2.1 SOFTWARE PRODUCT LINES 6

(a) Resolution: 160x128 (b) Resolution: 320x240 (c) Resolution: 1920x1080

Figure 2.1: Different models of mobile phones. Source: samsung.com

we end up with duplicated code among these products, since in its essence, the game

is the same across the different versions. Therefore, each version should be maintained

separately too. In this context of mobile phones, we are talking in much more phone

models than these three in the examples, we can refer hundred of different phones. This

might lead to extra costs for developing a new version of the game, maintainability issues

caused by resource shortages, among others [CN02, LSR07, PBL05, Kru02]. To avoid

these problems, we can use concepts of software product lines engineering [CN02].

Software Product Line Engineering (SPLE) is a software engineering approach for

developing families of software products using a common core asset base to satisfy the

needs of a particular market segment [CN02]. This approach provides development and

mass customization [PBvdL05], also representing the large production regarding prod-

uct variabilities according to the market needs. The characteristic that distinguishes

software product lines from other approaches is predictive versus opportunistic software

reuse. Rather than put general software components into a library in the hopes that

opportunities for reuse will arise, software product lines only call for software artifacts

to be created when reuse is predicted in one or more products in a well-defined product

line [Kru06], i.e., in the SPL reuse context is planned.

At the core of SPLE is the systematic reuse of software assets across the products in the

product line. Such assets include plans, designs, code, test cases and any other artifact

used to develop software, and cover the entire engineering process, from requirements

to architecture, implementation, test, and maintenance. The core assets development

include a process that establishes a reusable platform and consequently the commonalities

and variabilities of the SPL, being known as Domain Engineering.

The Domain Engineering identifies common features of an area and handle their for

reuse by applications of a specific domain. The focus is centered on the commonalities

2.1 SOFTWARE PRODUCT LINES 7

presented by a set of applications. The Domain Engineering aims to transform these

commonalities in tangible artifacts. The process defines the development of these artifacts

through the evolutionary prototyping with short iterations supported by the spiral model

proposed by Boehm [Boe86]. Thus, the artifacts from this stage would be stored in a

repository, to be reused later.

In contrast to Domain Engineering, which focuses on commonalities in a set of ap-

plications, Application Engineering aims to develop applications with reuse of artifacts

provided from Domain Engineering. Products or applications are instantiated using the

artifacts to compose its functionalities. The higher the reuse of artifacts made by the

products, usually means the more efficient is the product line. Application Engineering,

as Domain Engineering, uses the spiral model with short iterations.

Although a full asset repository is available, every application has its specificity and

needs some customizations. It is important to remember that, although more costly, new

feature development should be considered to inclusion in the repository, for future reuse.

This increases the reuse degree of the product line as is being used, enabling medium and

long term feedback.

Some advantages of using software product line concepts:

� Time-to-market reduction: initially, the time-to-market of the SPL is high,

because the core assets must be developed first. Afterwards, the time-to-market is

reduced, because many components previously developed might be reused for new

products;

� Quality enhancement: the core assets of an SPL are reused in many products.

In this way, they are tested and reviewed many times, which means a higher chance

of detecting faults and correcting them, improving product quality;

� Development costs reduction: when artifacts are reused in several different

kinds of systems, this implies in cost reduction for each system, since there is no

need to develop such components from scratch.

To guarantee these advantages, it is essential to manage the product variabilities of

the SPL in a suitable way. Such variabilities play a key role in the SPL, since differ-

ent applications of the SPL can be distinguished in terms of these variabilities [Alv07].

In addition, they enable the development of customized applications by reusing some

predefined artifacts.

Several mechanisms may be used to implement variability in a product line. These

mechanisms may act to a greater or lesser level of granularity. An example of these

2.2 CONDITIONAL COMPILATION 8

mechanisms, is the use of inheritance, configuration files [Alv07], aspect-oriented pro-

gramming [KLM+97], mixins [BC90] and conditional compilation, being the last the

focus of this work.

2.2 CONDITIONAL COMPILATION

Between 1969 and 1973 Dennis Ritchie has developed a general-purpose computer pro-

gramming language called “C”. Prior, it was developed for use with the Unix Operating

System, but its use was expanded for developing portable application software and it

became one of the most widely used programming languages of all time [tio12].

The C language is marked by being fast, portable and by its lightweight meta pro-

gramming capabilities. These could be implemented and can be used by means of the

C preprocessor features. The C preprocessor (cpp) is a tool that was intended initially

to be used only with C, C++ and Objective-C source code. Given the simplicity of the

language and state of the art in compiler technology in the mid-1970s, the decision to

provide some language features in this extra-linguistic tool was justified, where the devel-

oper could not rely on it preserving characteristics of the input which was not significant

to C-family languages. But, new versions of cpp allow it to be used with any text artifact,

including other programming languages such as Java and C#.

The main features of cpp are file inclusion, macro definition and conditional inclusion,

which are specified by preprocessor directives. Preprocessor directives are represented by

lines included in the code of programs but that are not program statements. These lines

are preceded by a hash sign (#), where the preprocessor is executed before the actual

compilation of code begins. The preprocessor interprets all these directives before any

code is generated by the statements.

The preprocessor directives extend only across a single line of code. As soon as a

newline character is found, the preprocessor directive is considered to end. No semicolon

(;) is expected at the end of a preprocessor directive. The only way a preprocessor

directive can extend through more than one line is by preceding the newline character at

the end of the line by a backslash (\).
The preprocessor recognizes a set of directives, such as #define, #if, #ifdef, #elif,

#else, #ifndef, among others. They are typically used to make source programs easy to

change and easy to compile in different execution environments. Directives in the source

file tell the preprocessor to perform specific actions. For example, the preprocessor can

replace tokens in the text, insert the contents of other files into the source file, or suppress

compilation of part of the file by removing sections of text (conditional compilation).

2.2 CONDITIONAL COMPILATION 9

Preprocessor lines are recognized and carried out before macro expansion. Therefore, if

a macro expands into something that looks like a preprocessor command, that command

is not recognized by the preprocessor.

The conditional compilation mechanism can be used for many purposes. The List-

ings 2.1 and 2.2 show examples of conditional compilation use. The Java code snippet

in the Listing 2.1 was extracted from the BestLap 1 product line. BestLap is a casual

race game where the player tries to achieve the best time in one lap to qualify for the

pole position. The game is highly variant due to portability constraints: it should run on

numerous platforms. In fact, the game was deployed on 65 devices [Alv07].

Listing 2.1: Conditional compilation use on mobile game.

1 public void computeLevel () {
2 . . .

3 t o t a l S c o r e = . . .

4 . . .

5

6 #i f d e f ARENA

7 NetworkFacade . s e tSco r e (t o t a l S c o r e) ;

8 #end i f

9 }

In this game there is a method responsible for computing the game score. The feature

ARENA, represented in line 6, is an optional feature responsible for publishing the scores

obtained by the players on the network. This way, players around the world are able to

compare their results. The method also contains a variable called totalScore, respon-

sible for storing the player’s total score. Basically, the preprocessor will evaluate if the

ARENA feature was defined previously (line 6). If it was just defined, the piece of code in

line 7 is executed, in other words, the player’s score is published on the network.

The C code snippet in Listing 2.2 was extracted from core of the Linux Kernel. Linux

Kernel is the most important piece of the operating system used by the Linux family. It

is a structure formed by million of lines of code and provides many features for use by an

operating system, such as memory management and an Internet protocol suite.

Listing 2.2: Conditional compilation use on Linux Kernel.

1 . . .

2 #i f d e f CONFIG WL1271

3 pr in tk (KERN INFO "%s: CONFIG_WL1271 detected" , f u n c) ;

4 #else

1BestLap is a commercial product developed by MeanTime Mobile Creations.

2.3 SOFTWARE METRICS 10

5 pr in tk (KERN INFO "%s: CONFIG_WL1271 not detected" , f u n c) ;

6 #end i f

7 . . .

During kernel loading, some tests are executed to verify if required modules are present

on system. For a wifi module test, it is verified if the module is enabled (see Listing 2.2,

line 3). If it is enabled, a message with the information is displayed on the console (line

4). Otherwise, a message with another information is displayed on the console, reporting

the failure (see Listing 2.2, line 6).

Since conditional compilation provides a set of directives which are used to implement

variable code, it may be used in the context of software product lines. Programmers can

use the macro #define to set a feature constant on the code and provide a way to

compose features. Feature constants can also be defined in makefiles, in configuration

files, or during the compiler invocation. These feature constants can be combined with

logical operators provided by cpp, composing complex feature expressions. A feature

expression represents the condition that controls the inclusion or exclusion of feature

code. That is, based on the evaluation of a feature expression, the lines of source code

encompassed by #ifdefs are included or excluded, depending the results of expression.

Based on the definition of feature constants, the programmer is able to influence the

evaluation of a feature expression and, consequently, the presence or absence of feature

code. We can see these concepts in Listing 2.1, where the feature ARENA is encompassed

by #ifdef and #endif directives.

2.3 SOFTWARE METRICS

Since quantitative measurements are essential in all sciences, there is a continuous ef-

fort by computer science practitioners and theoreticians to bring similar approaches to

software development. The objective is quantifying some characteristic or attribute of a

computer software entity in a reproducible way. The quantifiable measurements may have

numerous valuable applications, such as in schedule and budget planning, cost estima-

tion, quality assurance testing, software debugging, software performance optimization

and optimal personnel task assignments.

Despite the efforts to apply quantitative measurements, software measurement has

become essential to good software engineering. Many of the best software developers

measure characteristics of the software to get some sense of whether the requirements are

consistent and complete, whether the design is of high quality, and whether the code is

ready to be tested. Effective project managers measure attributes of process and product

2.3 SOFTWARE METRICS 11

to be able to tell when the software will be ready for delivery and whether the budget

will be exceeded [FP98]. And so on. Each stakeholder of a project uses some kind of

measurement to identify if the process, project or products are achieving the desired goal.

But measurement has been considered a luxury in software engineer. When measure-

ments are made, they are often done infrequently, inconsistently and incompletely. These

factors can be frustrating to those who want to make use of the results. For example,

developers do not quantify or predict the quality of the products they produce. Thus,

they cannot tell a potential user how reliable a product will be in terms of likelihood of

failure in a given period of use, or how much work will be needed to port the product to

a different machine environment [FP98]. Or yet, when developers are convinced to try

another revolutionary new development technology. When this is done without doing a

carefully controlled study, is not possible to determine if the technology is efficient and

effective. Without measurement information it is not possible conduct an objective study

to repeat the measurements in our own environment.

The reasons why a project derails are not always known. It is essential to measure

and record characteristics of good projects as well as bad ones. It is necessary to docu-

ment trends, corrective actions and resulting changes, aiming to control the projects, not

just run them. To do that, the measurement objectives must be specific, tied to what

the managers, developers and users need to know. Every measurement action must be

motivated by a particular goal or need that is clearly defined and easily understandable.

These objectives may differ according to the kind of personnel involved and at which

level of software development and use they are generated. It is the goals that tell how

the measurement information will be used once it is collected [FP98].

The measurements help in such activities of software engineering, as to understand

what is happening during development and maintenance, where developers can assess the

current situation to set goals for future behavior. Furthermore, measurements allow one

to control what is happening on projects. Through the knowledge of the baselines, goals

and understanding of relationships, it is possible to predict what is likely to happen and

make changes to process and/or products aiming to achieve the intended goals [FP98].

This encourages to make improvements in it process and products, leading to achieve a

better solution to meet the defined goals.

The usefulness of design and implementation practices can be evaluated through em-

pirical studies. Software metrics are often used in empirical studies as indicators of the

strengths and weaknesses of the studied approach. Metrics evaluate the use of abstrac-

tions during software development in terms of software attributes and are more effective

2.4 SOFTWARE MAINTENANCE AND EVOLUTION 12

when they are associated with some assessment framework so that software engineers can

understand and interpret the meanings of the collected data [SGC+03].

Software metrics is a term that embraces many activities on software development,

including cost and effort estimation, and productivity measures and models. It is in the

interest of managers to be able to predict project costs during the first phases in the

software life-cycle. As a result, several models for software cost and estimation have been

proposed and used. These models often share a common approach, where the effort is

expressed as a function of one or more variables, such as size and level of reuse [FP98].

Furthermore, many managers make decisions based on productivity models, where they

can take into consideration the rate at which lines of code are being written per person

month of effort, for example. This is a simple measure and can be misleading, if not

dangerous [Jon86]. More complex models are defined and used extensively, providing a

significantly more comprehensive view of productivity.

Since this work aims at providing a set of data regarding preprocessor usage on SPLs,

software metrics become an important tool to guide us in which set of metrics use to it. In

this context, some metrics used in this work are concerning complexity. The complexity

can be considered as a separate component of size, and it can be expressed in a more

objective way. We consider define complexity in terms of some other metrics, such as

source lines of code, number of methods, number of features and number of different

kinds of preprocessor directives. This allow us to perform our studies using fine-grained

metrics regarding complexity.

2.4 SOFTWARE MAINTENANCE AND EVOLUTION

Software maintenance is about change. It may be a small change to fix a bug, for instance,

or to enhance software requirements to better satisfy a customer in particular or a set

of customers in a specific market place. These changes lead companies to spend a good

portion of time maintaining existing software code [Jar07], when they could be developing

a new software and, consequently, achieving new goals earlier.

During many years, maintenance was understood just as fixing errors in released

programs. Today, it is known that what happens to software after the first release is

much more complicated than that. For any software system to be successful, functional

improvements are inevitable and essential in it evolution: as the business rules change,

users come up with new requirements. In some cases, it is necessary to reengineer existing

software to take advantage of technological advances such as new platforms and architec-

tures, to improve software structure, reach new clients, or win a new market share [Jar07].

2.4 SOFTWARE MAINTENANCE AND EVOLUTION 13

And that is why software maintenance is characterized as the most expensive software

activity. Various studies and surveys indicate that over 80% of the total maintenance

effort is used for non-corrective actions [Pig97]. In addition, other studies indicate that

software maintenance accounts for at least 50% of the total software production cost, and

sometimes even exceeds 90% [SPL03]. Since software maintenance is present in all de-

velopment contexts, this high maintenance cost can cause serious practical implications,

such as to limit or prevent IT divisions from delivering new systems that might be of

strategic importance to their companies.

Several factors in software development tasks make change hard, such as the software

size, it complexity and the effects that modifications in it can induce. In the context

of complexity, it can be determined by two factors: (i) the complexity of a problem

and its solution at the conceptual level, and (ii) the fact that not only do programs

express problem solutions, but also must address a range of issues related to solving a

problem by a computer [F.P87]. These two factors cannot be cleanly separated from

one another in program components, which can lead developers to use decomposition

techniques —such as aspect-oriented programming [KLM+97] and XVCL [JBZZ03]—

to combat complexity. Regarding the effects caused by modifications on software, a

change in customer requirements may affect multiple software components, as well as their

architecture. Any change that affects component interfaces or global system properties

may unpredictably impact many software components [Jar07].

Besides the aforementioned problems, code structures with similarities often copied

and duplicated in many places in a program, can make change hard and contribute

significantly to high maintenance cost of the software. Part of this code redundancy is

created intentionally and for a justified reason, such as to improve software performance

or reliability, or are induced by an employed programming technology. Any changes on

these redundancies expose programs to risks of malfunctioning, and the application of

some techniques to overcome this problem, such as refactoring [FBB+99], may not be a

viable option for business reasons.

Software can suffer from various errors, which may cause crashes, hangs or incorrect

results, significantly threatening the reliability and the security of computer systems. Un-

fortunately, fixes to these bugs may still have problems, since they are written by humans.

Some fixes either do not fix the problem completely or even introduce new problems, as

reported by some big companies such as Microsoft [McM10] and Apple [McM06]. Mis-

takes in bug fixes may be caused by many possible reasons, as the tight deadlines, where

fixers have much less time to think cautiously, especially about the potential side-effects

2.4 SOFTWARE MAINTENANCE AND EVOLUTION 14

and the interaction with the rest of the system, or the focus on removing the bug com-

paring to general development, where testers may just focus on making an observed bug

symptom disappear, but forgetting to test some other aspects, in particular how the fix

interacts with other parts and whether it introduces new problems.

Maintenance problems aggravate during software evolution, when many changes get

implemented over time. During the planning phase, program comprehension is essential

to understand what parts of the software will be affected by a requested change. But

it is common not document and delegate the problems from several sources of change

on code to external tools, but this “approach” hasn’t proved successful so far. The low

knowledge of changes that have affected software over time makes future change even

harder. This indiscipline to deal with changes on software evolution adds to program

complexity. Problems like these on software evolution did not receive much attention,

since the main role of programming languages has been to provide abstractions for code

structures to be executed on a computer, and the mechanism for change have been left

on background [Jar07].

When the number of variant features in software increases, the problems get worse.

Various combinations of these features might have been implemented into released sys-

tems, and may be needed in future releases. The existence of variability realization

mechanisms has been identified as one the obstacles that impedes implementation of

reuse strategies via the product line architecture approach [DSB05]. Furthermore, the

occurrence of feature dependencies is a problem to be considered too. Functional depen-

dencies among features imply that only certain combinations of features can coexist on

the same software release. The lack of information about dependency rules may cause

problems in software construction and deployment, resulting in an incomplete system or

in problems with its build process.

Since new software release has been requested, the use of previous releases is a good

strategy to save the time and effort of implementing a new system. However, features im-

plemented in past releases may need to be adapted to the context of a new release [Jar07].

The facility to reuse features already implemented determines the evolution productiv-

ity, making the whole difference between ad hoc and systematic evolution and should be

considered in maintenance and evolution activities.

CHAPTER 3

LITERATURE REVIEW

Aiming to identify the relevant studies regarding the use of conditional compilation, we

conducted a literature review on which studies perform evaluation regarding the use of

conditional compilation in software projects. We do this based on systematic mapping

guidelines, simplifying some steps due to some restrictions, as we will explain as follows.

Systematic mapping studies are based on a well-defined research strategy, aiming to

identify, evaluate and interpret all available research relevant to a particular research

question [PFMM08]. These differ from systematic reviews in some points, as mapping

studies generally have broader research questions, driving to ask multiple research ques-

tions, and the data extraction process of mapping studies is also much broader than

the data extraction process for systematic reviews, due to these broader research ques-

tions. To document the mapping, we define the review protocol, that is a document

which specifies the research questions and the methods that will be used to undertake

the mapping. The document must include the strategy that will be used to search for

primary studies including search terms and resources to be searched, as well as clearly

define the selection criteria to evaluate each study in potential. Therefore, the defini-

tion of a review protocol enables readers and researchers to know the reviews rigour and

completeness [dABMN+07]. A systematic mapping aims to present a fair evaluation of a

research topic by using a trustworthy, rigorous, and auditable methodology [PFMM08].

Aware of systematic mapping guidelines, the literature review performed in this thesis

considered some characteristics of them, like the definition of research questions, study

selection criteria and data extraction strategy. However, some characteristics that give

support to the rigour of Systematic Mapping were not considered. This was decided due

to time constraints and the fact that this mapping is not the main contribution of this

work. The main restrictions of this mapping study are described below:

� The review protocol, the search terms and inclusion/exclusion criteria were not

evaluated by other researchers, other than the advisor of this research;

� The results of study selection were not revised by other researchers;

15

3.1 REVIEW PROTOCOL 16

� The search process used only two search engines, although these index the most of

papers from other sources.

The following sections define the literature review protocol and present the review

execution data and results from selected review studies.

3.1 REVIEW PROTOCOL

As stated prior, the review protocol specifies the research questions and the methods that

will be used to undertake the mapping. It should include all the elements of the review,

as study selection criteria and data extraction strategy. The use of a review protocol

aims to reduce the possibility of research bias as a malformed search process or a study

selection guided by researcher intuition.

The following sections specify the research elements and give detailed information

about each step in the mapping study as well as the results.

3.1.1 Search Process

To try to assess the largest amount of studies possible in a short time period, we used

the search engines Scopus 1 and EI Compendex 2. We used only these two search en-

gines because they index the most relevant databases in research area, covering the main

computer science published journals as IEEE, ACM and IET.

The search process was defined in steps with specific goals, based on research terms,

keywords and their synonyms. Figure 3.1 shows the search process and its steps.

Figure 3.1: Search process and it steps.

The first step in the search process to conduct a systematic mapping is to define

the research questions. Remaining search process steps will trust on these questions to

achieve their goals. The next step is to define the keywords and their derived words.

1www.scopus.com
2www.engineeringvillage2.org

3.1 REVIEW PROTOCOL 17

Both are defined from research questions and will be used on search engines to retrieve

all reliable studies addressing these questions. This will be done on the third step. Next,

a set of relevant studies is selected by applying inclusion/exclusion criteria, where for

each selected study, a set of data addressing the research questions is extracted. Finally,

at the last step, the amount of extracted data is summarized and combinated to provide

an information that allows us answer the research questions.

3.1.2 Research Questions

The context of this review refers to evaluation of the use of conditional compilation in

software projects. Thus, we defined the following research questions for our study:

Research Question 1: Which research topics were discussed in studies that evaluate

conditional compilation use in software projects?

Research Question 2: What kinds of evaluation were performed?

Research Question 3: What were the main results?

3.1.3 Keywords & Search Terms

The search strings used in this research were constructed using the following strategy:

� Derive main terms based on the research questions and the topics being researched;

� Determine and include synonyms, related terms and alternative spelling for major

terms;

� Check the keywords in initial searches on the relevant sources;

� Incorporate alternative spellings and synonyms using boolean “OR”;

� Link main terms using boolean “AND”;

� Pilot different combinations of research terms.

Following this strategy, the major terms and their derived words used to compose the

search string are summarized in Table 3.1.

The search terms were fomulated from the keywords and their derived words using

the operator OR, as follow below:

� evaluation OR rating OR assessment

3.1 REVIEW PROTOCOL 18

Table 3.1: Keywords and their derived words.

Keyword Derived words

evaluation rating, assessment

conditional compilation
preprocessor, pre-processor, preprocessing, pre-processing,
macro, variability

software program, application

� conditional compilation OR preprocessor OR pre-processor OR preprocessing OR

pre-processing OR macro OR variability

� software OR program OR application

Thereafter, the search string was defined by using the search terms with the operator

AND, as presented below:

(evaluation OR rating OR assessment) AND (“conditional compilation” OR

preprocessor OR pre-processor OR preprocessing OR pre-processing OR macro OR

variability) AND (software OR program OR application)

3.1.4 Inclusion & Exclusion Criteria

One important detail to consider is the inclusion and exclusion of papers. The researcher

must be very careful when analyzing which papers will and will not be included, be-

cause some interesting papers can be erroneously excluded as a result of a misconducted

analysis.

In the current study, all papers that were clearly out of scope were removed early in

the process based on the analysis of the title, abstract and keywords. After the initial

selection, the full versions of each paper were obtained and a more detailed analysis could

be performed. The following criteria were applied in order to include or exclude the paper

from the mapping:

� The papers should be available on the web;

� Papers that represent real papers, not a Power Point� presentation or extended

abstract (tech reports, PhD Thesis and MSc Dissertations are considered as well);

� The papers are not duplicates;

� The papers should present any kind of evaluation of the use of conditional compi-

lation, regardless scope or sample size;

3.1 REVIEW PROTOCOL 19

� The paper is related to software engineering.

The quality analysis of the selected studies was not performed in this research. To

include/exclude studies in/from list of select studies, only inclusion/exclusion criteria

were considered.

3.1.5 Data Extraction

From the list of selected studies, some data was extracted aiming to answer the research

questions defined previously. To help on this process, for each selected paper, two forms

were used. They are shown below.

Form A

This form was used to collect general information from the selected primary studies. The

following information was collected from each paper:

- ID: An identifier for the paper. It is useful to reference the selected paper in several

parts of the mapping;

- Source: The publisher of the paper;

- Year: The year of publication;

- Title: The title of the paper;

- Author: The list of authors of the paper;

- Institution: The list of institutions that took part in the work;

- Country: The list of countries where the institutions are based.

Form B

In addition to Form A, Form B was used to extract the relevant information from the

primary studies, mainly aiming answer the research questions stated in Section 3.1.2. For

each primary study analyzed, the following information was collected:

- Evaluation Date: When the paper was evaluated;

- Research Question 1: Which research topics were discussed in the study?

3.2 EXECUTION 20

- Research Question 2: What kinds of evaluation were performed in the study?

- Research Question 3: What were the main results of the study?

- Notes: Eventually some insight from the researcher can be documented in this

field.

3.2 EXECUTION

The execution of research at search engines using the search string defined above does

not take any time restrictions. A summary with execution data is presented in Table 3.2.

Table 3.2: Summary of execution data.

Source
Potentially

Not Relevant
Source

Results
Relevant

Relevant
Repeated Incomplete

Studies
Studies

EI Compendex 4019 13 4006 0 0 2

Scopus 1448 15 1433 2 0 6

Total 5467 28 5439 2 0 8

As showed, the number of relevant studies (8) is smaller than the total number of

studies (5467). This happened because of search string construction. The keywords and

derived words used in search terms to construct the search string were not too specific,

leading to find many articles of other research areas. On the other hand, using more

specific keywords would put some articles not to be found, which would result in a threat

to research results.

In addition to the relevant studies, 2 studies that not were identified by the search

process were recommended by other researchers. They were included on our analysis and

are listed in appendix of this work. The analysis of the all results took about 4 months

and was conducted by only one researcher.

3.3 RESULTS

We identified 10 empirical studies on the use of conditional compilation in software

projects. These studies cover a range of research topics and were performed in variable

settings. We will describe characteristics of the studies and analyze how they answer the

research questions defined in this work.

3.3 RESULTS 21

3.3.1 Overview

As we stated in Section 3.1.1, we use two search engines in our research. Figure 3.2

show the number of relevant studies found by the search engines and Figure 3.3 show

the distribution of these studies across the years. We found two (20%) relevant studies

in EI Compendex and six (60%) relevant studies in the Scopus search engine. Other two

studies (20%) were not identified by the search process and were recommended by other

researchers. As we can see, although EI Compendex source result is higher than Scopus

(three times) in the first step, the number of relevant studies found on Scopus was greater

than EI Compendex.

20%EI Compendex

60%Scopus

20%Other Researchers

0 1 2 3 4 5 6 7
Number of relevant studies

Figure 3.2: Distribution of relevant studies by search engine.

1992

2002

2008

2009

2010

2011

0 1 2 3 4
Number of relevant studies

Figure 3.3: Number of relevant studies by year.

There were 43 different authors in the 10 selected studies. The ones who published

more than one paper are presented on Table 3.3. The authors come from 15 institutions,

based on 5 different countries. The Figure 3.4 shows the participation of each country in

selected studies.

3.3 RESULTS 22

Table 3.3: Authors who have published more than one paper about conditional
compilation use.

Author #Studies

Christian Kästner 2
Jörg Liebig 2
Sven Apel 2
Eduardo Figueiredo 2

USA

Deutschland

Denmark

Brazil

Belgium

0 1 2 3 4
Number of relevant studies

Figure 3.4: Distribution of relevant studies by country.

3.3.2 RQ1 - Research Topics

The objective of this question was identify the main software engineering research fields

covered by research on conditional compilation use. In total, 11 different topics were

explored by the primary studies. The topics were identified based on description given

by the authors of the primary studies. The amount of investigated research topics is

higher than the total amount of primary studies because some studies take more than

one research topic. The most investigated topic was “SPL Maintenance and Evolution”.

The evidence extracted from the primary studies is summarized in Table 3.4 and

described in the remaining of this section.

Each research topic is briefly described and the primary studies that are related to

the topic are listed alongside with their correspondent evidence showing the relationship.

Variability Extraction

The C preprocessor is the tool of choice for the implementation of variability in many

large-scale configurable software projects. However, this variability tends to be “hidden”

in the code, which on the long term leads to variability defects, such as dead code or

3.3 RESULTS 23

Table 3.4: Summary of papers by research topic.

Research Topics References - PS: Primary Studies # of Studies (%)

Variability Extraction PS01, PS10 2 (20%)
SPL Maintenance and Evolution PS01, PS02, PS05 3 (30%)
Macro usage PS02, PS08 2 (20%)
Program comprehension PS03 1 (10%)
Refactoring PS03, PS07 2 (20%)
Disciplined and undisciplined

PS04 1 (10%)
annotations
Virtual separation of concerns PS05 1 (10%)
Feature Dependencies PS05 1 (10%)
Emergent Interfaces PS05 1 (10%)
Portability PS06 1 (10%)
AOP PS07, PS09, PS10 3 (30%)

inconsistences with respect to the intended software variability. This calls for variability

extraction, which aims to provide variability data from implementation / source code for

both developers during regular development phase and several kind of analysis, as allow

the crosschecking between the variability model and the implementation or analysis by a

SAT or BDD package.

The evidence which included the study in this topic is as follows:

� PS01 — “We sugggest a novel approach to extract cpp-based variability.”

� PS10 — “...this paper describes an experiment involving the extraction of a SPL

from ArgoUML...”

SPL Maintenance and Evolution

Software maintenance is an activity in software engineering which comprehends the mod-

ification of a software after delivery, aims to correct faults or improve any functionality.

On SPLs, this activity covers features across the code, which implies in accuracy with

evolution concerns by developers. Some key issues could be the alignment with cus-

tomer priorities, staffing, which organization does maintenance, estimating costs, limited

understanding, testing and maintainability measurement.

Below we present the evidence that included the studies in this topic:

� PS01 — “We believe that our model can support maintenance and evolution of

SPLs by automatically detecting several kinds of inconsistencies in different ways.”

3.3 RESULTS 24

� PS02 — “Since CppChecker provides an accurate mapping from the pre-cpp and

post-cpp token streams to ASTs, we believe it presents an opportunity for developing

better refactoring tools for C/C++ programs. It is particularly interesting to develop

tools for analyzing macro usage across programs for across-program understanding

and maintenance.”

� PS05 — “In this context, emergent interfaces can capture dependencies between

the features we are maintaining and others, making developers aware of them.”

Macro Usage

Macro usage is the way that preprocessors can be used on software code to implement

a set of features, including variability. Through the use of directives defined for each

preprocessor, is possible to declare constants and encompass a code snippet that will be

built depending on the result of the evaluation of a conditional expression.

The evidence which included the studies in this topic is as follows:

� PS02 — “...we introduce a novel, general characterization of inconsistent macro

usage as a strong indicator of macro errors.”

� PS08 — “We determine the incidence of C preprocessor usage—whether in macro

definitions, macro uses, or dependencies upon macros—that is complex...”

Program Comprehension

Program Comprehension is a software engineering activity concerned with the ways soft-

ware engineers maintain existing source code. It is known that 80% of the time in

software development is spent with maintainance tasks. Of the maintainance time, 20%

is spent changing the code while 80% of the time is spent just trying to understand the

code [Pig97]. This lead to some drawbacks, such as rework by developers and, conse-

quently, a spread of development costs. Program comprehension is necessary to facilitate

reuse, inspection, maintenance, reverse engineering, reengineering, migration, and exten-

sion of existing software systems.

The evidence which included the study in this topic is as follows:

� PS03— “These questions revive earlier discussion on program comprehension and

refactoring in the context of the preprocessor.”

3.3 RESULTS 25

Refactoring

Refactoring is a disciplined technique for restruturing the internal structure of a software

program aiming to make it easier to be understood and less costly to be modified, without

changing it external behaviour. The idea is that internal changes improve the structure

of code by small and constant changes. As changes tend to be small, the chances of

introducing errors are reduced. Moreover, one avoids breaking the system while carrying

out the restruturing, by means of gradual refactor over an extended period of time.

Below we present the evidence that supported the inclusion of the studies in this topic:

� PS03— “These questions revive earlier discussion on program comprehension and

refactoring in the context of the preprocessor.”

� PS07 — “This paper applies preprocessor blueprints to find out whether or not the

refactoring of conditional compilation patterns into advice is technically feasible,

independent from the semantics or purpose of the conditional code.”

Disciplined and Undisciplined Annotations

As way to identify how developers are annotating their C code, disciplined annotations

are defined by annotations on one or a sequence of entire functions and type definitions.

Furthermore, annotations on one or a sequence of entire statements and annotations on

elements inside type definitions are considered disciplined too. All other annotations are

considered undisciplined.

Below there are the evidences that included the studies in this topic:

� PS04 — “We distinguish between disciplined annotations, which align with the

underlying source-code structure, and undisciplined annotations, which do not align

with the structure and hence complicate tool development.”

Virtual Separation of Concerns

Virtual Separation of Concerns (VSoC) has been proposed as a way to allow developers

to hide feature code not relevant to the current task, reducing some of the preprocessors

drawbacks. Developers do not physically extract the feature code, but just annotate

code fragments inside the original code and use tool support for views and navigation.

To annotate the code, background colors are used, so that code fragments belonging to a

3.3 RESULTS 26

feature are shown with a background color; hence the name. The main idea is to provide

developers a way to focus on a feature implementation without being distracted by others.

Below there are the evidences that included the studies in this topic:

� PS05 — “Besides, we provide an empirical study to compare maintenance effort

when using VSoC and emergent interfaces”

Feature Dependencies

Features of a software product line can share elements, such as methods and variables,

with others. When this sharing occurs, there might be dependencies between the involved

features. These dependencies can be characterized in many ways, such as when a feature

assigns a value to a variable read by another one or when a feature instantiates a variable

used by another one. Thus, due to these dependencies, in a maintainance task, a developer

can maintain a specific feature and break another.

The evidence which included the study in this topic is as follows:

� PS05 — “Our analysis comprehends preprocessor usage and feature dependencies

frequency.”

Emergent Interfaces

Emergent Interfaces is an approach to deal with maintainance tasks on a product line,

when developers are maintaining feature code. Emergent Interfaces capture dependen-

cies between the feature being maintained and others, giving information about features

which might impact with the maintainance task. From that, developers can be aware

of dependencies and, consequently, might avoid maintainability problems as late error

detection and hard navigation.

The evidence which included the study in this topic is as follows:

� PS05 — “In this context, emergent interfaces can capture dependencies between

the features we are maintaining and others, making developers aware of them.”

Portability

An application is portable across a class of environments to the degree that the effort

required to transport and adapt it to a new environment in the class is less than the

3.3 RESULTS 27

effort of redevelopment. In the context of #ifdefs, its use works acceptably well when

differences are localized and only two versions of the code are present. Unfortunately, as

software using this approach is ported to more and more systems, the #ifdefs proliferate,

nest, and interlock. After a while, the result is usually an unreadable and unmaintainable

mess.

The evidence which included the study in this topic is as follows:

� PS06 — “We believe that a C programmer’s impulse to use #ifdef in an attempt

at portability is usually a mistake.”

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming paradigm which aims to increase

modularity by allowing the separation of cross-cutting concerns. AOP complements OO

programming by allowing developer to dinamically modify the static OO model to create

a system that can grow to meet new requirements through some concepts as joinpoints,

pointcuts and advices. Just as objects in the real world can change their states during

their lifecycles, an application can adopt new characteristics as it develops.

The evidence which included the study in this topic is as follows:

� PS07 — “This paper applies preprocessor blueprints to find out whether or not the

refactoring of conditional compilation patterns into advice is technically feasible,

independent from the semantics or purpose of the conditional code.”

� PS09 — “This paper presents a case study that quantitatively and qualitatively

assesses the positive and negative impacts of AOP on a number of changes applied to

both the core architecture and variable features of SPLs ... Conditional compilation

was the variability mechanism used ... in turn with the goal of supporting an analysis

of the positive and negative impacts of AOP.”

� PS10 — “This section presents and discusses ... the feasibility of using aspect-

oriented development techniques to extract the eight optional features of ArgoUML-

SPL.”

3.3.3 RQ2 - Kinds of Evaluation

The goal of this question was categorize kinds of evaluation used by research on con-

ditional compilation use. It is important to identify which kinds of evaluation were

3.3 RESULTS 28

employed by the authors because this might be valueable information to researchers that

intend to replicate the study analysis or apply some evaluation to their own research.

The results from the current analysis will help us to better define our evaluation strategy.

Only one paper did not provide any information about the evaluation performed

(PS06). All other seven studies applied some kind of automatic analysis, aided by some

toolchain, developed by the authors or existing on the literature.

The evidences which show use of automatic analysis on the studies are presented

below:

� PS01 — “As frontend, we have written the tool source2rsf, which extracts cpp

directives from source files. ... The backend is implemented with our tool under-

taker...”

� PS02 — “We have performed empirical evaluations of our tool on the top test

subjects used in Ernst et al.’s study.”

� PS03 — “Furthermore, we used the tool src2srcml to generate an XML represen-

tation of the source code for measuring the granularity of extensions made with

cpp.”

� PS04 — “Our analysis requires representing source code as an AST. We use the

tool src2srcml for this task.”

� PS05— “We built a tool to compute some metrics such as number of methods with

preprocessor directives (MDi) and number of methods with feature dependencies

(MDe).”

� PS07 — “We built a prototype implementation (“R3V3RS3”) for the blueprint

model and pattern matching facility, based on a robust C parser and regular expres-

sion matching... To validate the preprocessor blueprints’ ability to express and query

for all occurrences of a conditional compilation pattern, we have applied R3V3RS3

to the Parrot VM.”

� PS08 — “We used programs we wrote to analyze 26 publicly available C software

packages that represent a mix of application domains, user interface styles (graphical

versus text-based, command-line versus batch), authors, programming styles, and

sizes.”

3.3 RESULTS 29

� PS09 — “The design stability evaluation of the Java and AspectJ versions were

based on three conventional metrics suites for modularity, change impact, and fea-

ture interaction ... an independent group of five post-graduate students was respon-

sible for implementing the successive evolution scenarios ... ”

� PS10 — “We have proposed a framework for the evaluation and characterization

of preprocessor-based product lines ... we have extended this framework with new

metrics, such as those related to scattering and tangling. The extended framework

supports the characterization of features according to different perspectives, includ-

ing size, crosscutting behavior, granularity, and static location in the code.”

3.3.4 RQ3 - Main Results

The objective of this section is to map the main results obtained by research on conditional

compilation use. The results from the studies concerned to the research topics identified

and described in Section 3.3.2. As results were found with respect to different research

topics and present different data from different evaluations, they could not be summarized

and are described as follow:

� PS01 conducts two case studies: on Graph Product Line (GPL) and on Linux

Kernel code. On the first one, it found out that variability described by the feature

model covers less than 2% of the variability described in the source code, demon-

strating the “semantic poornes” of cpp-based variability. On the second one, it

implements a consistency check which detects conditional blocks that are not se-

lected under any possible input configuration (dead blocks) through SAT and BDD

variants of undertaker. It found 4 dead blocks, two of which have been confirmed

as new bugs.

� PS02 introduces a characterization of inconsistent macro usage as a strong indicator

of macro errors. It claims that all applications of the same macro should behave

similarly. To validate this, the authors implemented an algorithm (CppChecker) to

statically validate macro usage and applied it to 4 software packages. The results

point that the authors found it difficult to detect macro errors using their notion of

inconsistent macro usage. Despite that, the tool was effective in detecting common

macro-related errors, reporting some false positives (4/6) on analysis, making it a

practical tool for validating macro usage.

3.3 RESULTS 30

� PS03 tries to answer some questions regarding program comprehension and refac-

toring through the analysis of forty preprocessor-based product lines. Concerned to

program comprehension, it found that the variability of a software system increases

with its size. Furthermore, the complexity of cpp-based SPL implementations in-

creases with the increasing use of feature constants in feature expressions and of

#ifdef nesting. Concerning refactoring too, data reveals that programmers use

fine-grained extensions infrequently (1.8% in the average). Moreover, 89% of the

extensions are heterogeneous, that is, it would suffice to use simpler mechanisms,

such as mixins or feature modules.

� PS04 aims to treat the question of how frequently programmers use undisciplined

annotations and whether it is feasible to change them to disciplined annotations. It

shows empirically, trough analysis of 30 million lines of code, that programmers use

cpp mostly in a disciplined way: about 84% of all annotations. To take advantage

of disciplined annotations, it is feasible to accept certain kinds of and a certain

amount of code replication as a means to promote a better tool support and a

better readability of code.

� PS05 proposes the concept of emergent interfaces to help developers to maintain

feature tasks. To do so, it analyzed 3 metrics (number of fragments, number of

features and lines of code) on methods of 44 SPLs, comparing the effort on main-

tainance tasks using VSoC and emergent interfaces. Authors conclude that, when

using emergent interfaces, the maintainance effort reduces 37% for fragments, 25%

for features and 26% for lines of code. Considering the total of methods analyzed,

it achieved effort reduction in 36% of methods. From SPLs, the gain was 82%.

� PS06 discusses the use of #ifdefs as a means to improve the portability. The

authors claims that use #ifdefs as way to turn software portable is a bad idea.

By means of examples of C News code, they discuss some aspects such as portable

interfaces and levels of abstraction, and conclude that the use of #ifdefs often de-

grades modularity and readability. There are better ways to turn software portable,

given some advance planning.

� PS07 discusses the refactoring of conditional compilation use into aspects. It in-

vestigates some issues regarding that, as which patterns of conditional compilation

aspects make sense and whether or not current aspect technology is able to express

these patterns. The paper presents a graphical “preprocessor blueprint” model

3.3 RESULTS 31

which offers a queryable representation of the syntactical interaction of conditional

compilation and the source code. Through the prototype R3V3RS3, the authors

validate the approach in Parrot VM, concluding that eleven patterns matched cap-

ture conditional compilation usage in up to 99% of the source files, and that two of

the six most popular patterns are hard to refactor into advice. Yet, authors claimed

that, given the trade-offs derived for most of the discussed aspect implementations,

conditional compilation is often still the preferred implementation technique to

manage variability in C/C++ systems, despite the tangling and scattering.

� PS08 analyzes cpp usage through various aspects, such as macro definitions, macro

uses and dependencies upon macros. It analyzes 26 software packages and provides

a set of data regarding mentioned previously aspects. From the results, it was possi-

ble to identify the difficult of eliminating the use of preprocessor through translation

to C++. It shows the way to development of preprocessor-aware tools, and pro-

vides tools as an extensible preprocessor, a cpp partial evaluator and a lint-like cpp

checker. The resulting data can provide value to language designers, tool writers,

programmers and software engineers.

� PS09 presents a case study that assesses the positive and negative impacts of AOP

on a number of changes applied to both the core architecture and variable features

of two SPLs. To do this, the authors used three metrics suites (modularity, change

impact and feature interaction) with conditional compilation in turn with the goal

of supporting the assessment. From the results, the authors conclude that AO

implementations of the studied SPLs tended to have more stable design particularly

when a change target optional and alternative features, indicating that aspectual

decompositions are superior in those situations. Furthermore, they found that AO

mechanisms did not cope with the introduction of widely-scoped mandatory features

or when changing a mandatory feature into alternatives.

� PS10 describes an experiment involving the extraction of an SPL from ArgoUML,

called ArgoUML-SPL. The authors used conditional compilation to extract eight

complex and relevant features from it and used four set of metrics to evaluate the

implementation of these features: size metrics, crosscutting metrics, granularity

metrics, and localization metrics. From the results, it was possible to discuss some

points about ArgoUML-SPL, such as crosscutting patterns found on it extraction

and the feasibility of using aspect-oriented development techniques to extract the

eight optional features. The authors made ArgoUML publicly available in intention

3.4 LIMITATIONS 32

to promote it use among researchers and practitioners interested on product line

related topics.

3.3.5 Other Results

As a way to increase the main results discussed on Section 3.3.4, other results are presentd

as follows. Table 3.5 shows the main tools developed and/or used on studies. These tools

helped authors to provide data about their research.

Table 3.5: Summary of main tool developed/used on research papers.

Reference - PS: Primary Study Toolchain

PS01 source2rsf, undertaker
PS02 CppChecker (ROSE, Boost Wave)
PS03 src2srcml
PS04 src2srcml
PS05 Feature Sensitive, Emergent Interface
PS06 Unknown
PS07 R3V3RS3
PS08 Not described
PS09 Unknown
PS10 Not described

Most of papers’ authors developed their own tool to help on data collection and

analysis. Some authors made use of other tools to help on their research, such in PS02.

Two papers (PS06 and PS09) presents collected data, concludes something about that,

but did not specify which tool was used for this purpose. Furthermore, two papers (PS08

and PS10) mentioned the use of a developed tool, but did not describe it.

3.4 LIMITATIONS

As we stated at the beginning of this chapter, we perform a mapping study based on sys-

tematic mapping guidelines. The objective of these guidelines is to introduce a methodol-

ogy for performing rigorous reviews of empirical evidence in software engineering studies.

But in our mapping study, we simplify some steps in systematic mapping process, aiming

to meet the time constraints imposed and focus on the main contribution of this work.

As the restrictions presented earlier in this chapter affect the rigour established by the

systematic mapping guidelines, we aware that our mapping study presents limitations

and that these limitations can be rectified by future studies.

3.5 SUMMARY 33

3.5 SUMMARY

In this chapter we present a mapping study concerning preprocessor usage on software

projects. We define a review protocol, when we specify the research questions and the

methods that were used to undertake the mapping, as well as the terms used to compose

the search string. The results from the mapping execution were presented, answering

the research questions stated on the protocol, and describing other results concerning the

study.

CHAPTER 4

DEPENDENCY ANALYSIS

Chapter 3 presented a mapping study about the use of conditional compilation in real

software projects, describing the protocol used and showing the results about that. Moti-

vated by the mapping results, in this chapter we present an analysis of feature dependency

occurrence in real software projects regarding the use of the annotative approach called

conditional compilation. We aim to complement other studies about conditional compi-

lation use, as well as to provide intuitive data which can be used by researchers as input

to their studies, such as programming languages design and preprocessors tool support.

Prior, we specify the concept of feature dependency in Section 4.1. We make some

assumptions aiming to perform an initial assessment of dependency relations. At Sec-

tion 4.2 we describe our empirical study, presenting our research questions, the process

performed to answer them and showing the results of it, considering the threats to study

validity.

4.1 FEATURE DEPENDENCIES

Software Product Lines share a common set of features that satisfy the needs of a par-

ticular market segment. By reusing assets, it is possible to construct products through

features defined according to customers’ requirements. In this context, features can be

considered the semantic units by which we can differentiate programs in an SPL [TBD06].

Features are essential abstractions that both customers and developers understand. A

feature is an end-user-visible program characteristic that is relevant to the stakeholders

of the application domain. It represents important distinguishing aspects, qualities or

characteristics of a family of systems. Customers and engineers usually speak of product

characteristics in terms of the features the product has or delivers, so it’s natural and

intuitive to express any commonality or variability in terms of features.

Features usually share elements such as variables and methods among each other. In

this context, when maintaining product lines, due to this sharing, developers may com-

promise feature modularization, which aims at achieving comprehensibility and change-

ability [Par72]. In other words, this means that a developer can introduce problems

34

4.1 FEATURE DEPENDENCIES 35

to another feature that is not under his responsibility [RPTB10]. For example, he can

modify an element—variable or method—in one feature that is declared or used by an-

other feature. Whenever we have this sharing, we say that there is a feature dependency

between the involved features [RQB+11].

In our research, we target some specific kind of feature dependency, which we call

simple dependencies. These simple dependencies may be characterized by the following

assumptions: (i) a dependency consists of a def-use attribute, that is, variables that are

defined in one feature and used in another; and (ii) intra-procedural dependencies, that is,

feature dependencies which only occur within methods boundaries. Despite some other

kinds of feature dependencies [RPTB10], we focus on the simple ones to perform an initial

assessment of dependencies occurrence.

To better explain the feature dependencies we consider here, we provide two scenarios

where we use preprocessor directives to encompass feature code. We expose them in the

following.

Dependency Occurrence on Optional Feature

Listing 4.1 illustrates a variable that is declared in one feature and used in another. The

code snippet was extracted from Vim 1 product line. Vim is an advanced text editor that

seeks to provide the power of the de-facto Unix editor Vi 2, with a more complete feature

set. In this example, we declare the echo variable in a mandatory feature—there is no

#ifdef statement encompassing the variable declaration—and we use such a variable in

the GOTO FROM WHERE INCLUDED feature. In this particular case, we use the variable as a

parameter of the echogets method to compose a conditional structure whose result will

be assigned to the ok variable. Notice that, because of the feature dependency, when

maintaining the echo variable in the mandatory feature (i.e., by changing it type or its

name), developers may introduce problems to the GOTO FROM WHERE INCLUDED feature.

Unfortunately, these problems are not always easy to detect, since maintenance tasks may

lead not only to compilation problems, but also to behavioral ones [RPTB10, RQB+11].

Listing 4.1: Feature dependency occurrence on Vim text editor.

1 . . .

2 int main (. . .) {
3 . . .

4 int echo = . . .

1http://www.vim.org/
2http://ex-vi.sourceforge.net/

4.1 FEATURE DEPENDENCIES 36

5 . . .

6 #i f d e f GOTOFROMWHERE INCLUDED

7 . . .

8 ok = (echoget s (Reason , echo) != NULL) ;

9 . . .

10 #end i f

11 . . .

12 }
13 . . .

Another example of feature dependency occurrence on optional feature is illustrated

in Listing 4.2. The code snippet was extracted from Kernel Linux 3. The kernel Linux is

the operating system kernel used by the Linux family of Unix-like operating systems. It is

an important piece of code composed by many features, configurable through its kconfig

tool. In this case, notice that the variable KERN INFO has been used on two different

features: CONFIG WL1271 and !CONFIG WL1271, encompassed by directives #ifdef and

#else, respectively. Thus, any maintenance task in KERN INFO variable can affect the

result of their use on both features.

Listing 4.2: Feature dependency occurrence on Kernel Linux.

1 . . .

2 #i f d e f CONFIG WL1271

3 pr in tk (KERN INFO "%s: CONFIG_WL1271 detected" , f u n c) ;

4 #else

5 pr in tk (KERN INFO "%s: CONFIG_WL1271 not detected" , f u n c) ;

6 #end i f

7 . . .

Dependency Occurrence on Alternative Feature

Different from the two previous examples, Listing 4.3 illustrates another way in which

feature dependencies can occur: between alternative features and a mandatory one. The

code snippet was extracted from Irssi 4. The Irssi is a terminal based IRC client for

UNIX systems. It provides some great features such as autologging and configurable

keybindings, and supports SILC and ICB protocols via plugins. In this example, we

declare the key variable in two alternative features (encompassed by #ifdef and #else

statements), with different types. Again, because of such a feature dependency, if the

3http://www.kernel.org/
4http://irssi.org/

4.2 EMPIRICAL STUDIES 37

developer change the key variable type, for instance, problems may be introduced to its

use in the g array append val method, which is in the mandatory feature. The method

g array append val would be prepared to accept the variable key as param, free of it

type, and the developer would be aware of this.

Listing 4.3: Feature dependency occurrence on Irssi.

1 . . .

2 void t e rm get s (. . .) {
3 . . .

4 #i f d e f WIDEC CURSES

5 wint t key ;

6 #else

7 int key ;

8 #end i f

9 . . .

10 g ar ray append va l (bu f f e r , key) ;

11 . . .

12 }
13 . . .

4.2 EMPIRICAL STUDIES

So far, we presented the concept of feature dependency as well as some examples extracted

from real systems. Also, we mentioned that these dependencies can lead developers to

introduce problems into other features they might not even responsible for.

Therefore, given the importance of dealing with feature dependencies, in this section

we provide three empirical studies to better understand how these feature dependencies

occur in practice. Recent work [LAL+10, LKA11] has focused on understanding how

developers use cpp’s variability mechanisms in practice. Complementing these studies,

we are interested in understanding the occurrence of feature dependencies in real case

studies.

In the next sections, we present our three empirical studies: we state the research

questions, present how we collect the data to answer these research questions and show

the results for each one.

4.2 EMPIRICAL STUDIES 38

4.2.1 Sample Projects & Collecting Data

For all three studies, we try to answer their research questions by analyzing 45 software

projects. They vary from simple and small product lines, such as mpsolve, to complex and

very large ones such as the Linux Kernel. Moreover, the projects belong to a variety of

different domains, such as database systems, web servers, programming libraries, mobile

games and operating systems, also different programming languages — C and Java. The

majority of programs is written in C and all of them contain several features implemented

using conditional compilation directives.

In order to provide compatibility in the analysis of projects developed in C and Java,

our research considered conditional compilation directives based on the Antenna 5 project.

Antenna provides a set of Ant tasks for developing wireless Java applications. With these

tasks, its possible compile, preverify, package, obsfuscate and run applications. It is also

possible to manipulate a Java Descriptor, as well as convert JAR files to PRC files.

Among other things, Antenna provides a simple Java preprocessor, similar to the ones

known from C and other languages, that allows for conditional compilation and including

source files. We used a subset of directives defined by Antenna which are also supported

by cpp. This subset of directives comprises the following: #ifdef, #ifndef, #elifdef,

#elifndef, #if, #elif, #else, #debug and #mdebug.

To perform our analysis we used a set of tools that helped us to do it and will

be described through this section. By the use of these tools, we could apply a set of

metrics and generate a large amount of projects data. The process for project data

generation is described as follows. At first, all 45 projects were downloaded manually

from repositories. Most of projects were hosted at Sourceforge 6, which is a known web-

based source code repository, acting as a centralized location for software developers to

control and manage free and open source software development. Some projects, such as

Totem, were downloaded from their own repositories, through their own official websites.

Next, we used the tool src2srcml 7 which parses the unprocessed code and generates

an XML representation of it [MCK04]. This representation has the AST form, which

allows us to navigate between annotations and perform computations. For C projects, we

analyzed .c files, where we could find dependencies. Similarly, we did for Java projects,

but some adjustments were necessary in the parsing process, aiming to normalize the

XML as the representations of C projects.

5http://antenna.sourceforge.net/
6http://sourceforge.net/
7http://www.sdml.info/projects/srcml/

4.2 EMPIRICAL STUDIES 39

With XMLs generated, we could compute the feature dependencies. For this, we

developed a tool based on a recent work [LAL+10] called pl-stats 8. We use our tool

to compute a set of metrics regarding feature dependencies. Our tool computes the

occurrence of dependencies for each project’s method, considering directives specified

previously, generating a .csv data file for each project. Thereafter, all projects data

are summarized in a one .csv file, which is used to provide the answers to our research

questions. Figure 4.1 give us an overview for the process of project data generation.

Figure 4.1: Overview for the process of projects data generation.

During our analysis, we had to exclude 77 from 56049 files (0.13% of all analyzed files)

from computations. This occurred because src2srcml could not correctly parse these files,

preventing us from performing the measurements.

4.2.2 Metrics

Aiming to understand how feature dependencies occur and answer the research questions

stated in our studies (Sections 4.2.3 - 4.2.5), we introduce the following set of metrics:

Number of Methods (NoM). The NoM metric is used to calculate the average

count of all class operations per class. It represents the size of a software program

regarding number of methods.

8https://github.com/felipebuarque/PL-Stats

4.2 EMPIRICAL STUDIES 40

Source Lines of Code (SLoC). The SLoC metric represents the size of a software

program regarding lines of code. To measure it, we used the CLoC 9 tool. We use

this metric with the NoM metric to better understand the influence of program size

on feature dependencies.

Methods with Directives (MDi). The MDi metric is the number of methods

which contains at least one directive. This metric will help us to understand the

preprocessor usage on analyzed software.

Methods with Dependencies (MDe). The MDe metric is the number of meth-

ods exhibiting occurrences of dependencies. With this metric we will understand

the impact of dependencies on projects’ methods.

Number of Fragments (NoFrag). The metric NoFrag is the number of fragments

that would have to be analyzed in feature dependency scenarios. We used this

metric to understand the effort of maintenance tasks occurring in interprocedural

dependencies.

Number of Features (NoFeat). The metric NoFeat is the number of features

that would have to be analyzed in feature dependency scenarios. We used this

metric to understand the effort of maintenance tasks occurring in interprocedural

dependencies too.

Number of Directive Occurrence (NoDiO). The NoDiO metric indicates the

occurrence of each directive on systems. We count how many times each directive

appear on system methods. This metric will help us to understand the proportion-

ality in which dependencies occur in each directive.

Number of Dependencies in a Directive (NoDDi). The NoDDi metric rep-

resents the occurrence of feature dependencies in each directive. We measure it

by counting the directives involved in a dependency relation. For instance, if a

variable is declared in a mandatory feature and is used in a feature encompassed

by #ifdef, we count one feature dependency occurrence in #ifdef directive. If the

variable is used another time in the same feature or in another feature encompassed

by #ifdef, we count two feature dependency occurrences, and so forth.

Number of Kinds of Directives (NoKDi). The NoKDi metric represents the

occurrence of different kinds of directives in a software program. If a project con-

9http://cloc.sourceforge.net

4.2 EMPIRICAL STUDIES 41

tains directives like #ifdef, we count 1. If the same project contains another kind

of directive like #elifdef, we increase this count to 2, and so fourth. In other

words, we check how many different kinds of directives are used in each software

program.

Number of Directives with Dependencies (NoDiDe). The NoDiDe metric

indicates the number of different kinds of directives involved in dependency rela-

tions. If there are dependencies involving #ifdef directive, for example, we count 1.

If there are dependencies involving another kind of directive like #elif, we increase

this count to 2, and so forth. In other words, we check if each kind of directive is

present at least one dependency relation.

Number of Feature Expressions (NoFE). The NoFE metric represents the

number of feature expressions existing in a project. Feature expressions are the

logical expressions evaluated by the preprocessor when it finds a directive declara-

tion in code processing. These expressions may be formed by several terms through

logical operators combinations, i.e. A && B or A || B.

Number of Dependencies (NoDe). The NoDe metric is the number of def-use

dependencies occurrences in the software program. We calculate the dependencies

for all methods based on assumptions stated on section 4.1.

We present the 45 projects and their respective computed metrics in Table 4.3 and Ta-

ble 4.4. The percentage of data presented following the convention “average ± standard

deviation” and all plots are presented with the correlation coefficient of their respective

metrics. Because the data are not normally distributed, we compute the correlation coef-

ficient using the method of Kendall [KBS39]. The value of Kendall correlation coefficient

(τ) vary from −1 to 1. The signal indicates if the relation direction between two vari-

ables is positive or negative, and the value suggests the relation strength between the

variables analyzed. A perfect correlation (−1 or 1) indicates that the value of a variable

can be known by knowing the value of another one. For the other values, we relied on

classification defined by Dancey & Reidy [DR11], which is presented in Table 4.1.

Based on classification schema presented above and the metrics defined previously,

we can answer our research questions. The description of each study and their respective

results are presented below.

4.2 EMPIRICAL STUDIES 42

Value Strength

0 None
0, 1 < τ ≤ 0, 3 Weak
0, 3 < τ ≤ 0, 6 Moderate
0, 6 < τ ≤ 1 Strong

Table 4.1: Classification of correlation values.

4.2.3 First Study: Frequency of Feature Dependencies Occurrence

In our first study, we investigate how feature dependencies impact on SPL maintenance

tasks. This was part of a major study comparing emergent interfaces [RPTB10] with

VSoC [KAK08] regarding the benefits of the first over the second on SPL maintenance

tasks. The idea was to measure the effort of both approaches when developers perform

maintenance tasks on SPL by computing some metrics like lines of code, number of

fragments and number of features.

To understand the frequency of dependencies occurrence on SPL, we answer the fol-

lowing research questions:

Research Question 1: How often do methods contain preprocessor directives?

Research Question 2: How often do methods with preprocessor directives contain fea-

ture dependencies?

To assess the research questions stated above, we analyzed the data provided fromMDi

and MDe metrics on Table 4.3. According to the results, these metrics vary significantly

across the product lines. Some product lines have few directives in their methods. For

instance, only 57 (2%) Irssi methods have directives. On the other hand, this number

is much bigger in other ones, like Python, where 3473 (27.59%) methods have directives

and Mobile-RSS, where 243 (26.94%) methods have directives. Following the convention

“average ± standard deviation”, our data reveals that 7.61%± 7.22% of the methods use

preprocessor directives. This answers our first research question concerning how often

methods contains preprocessor directives.

Notice that the MDe metric is low in many product lines. However, we compute

this metric with respect to all methods. Rather, if we take only methods with directives

into consideration, we conclude that, when maintaining features —in other words, when

maintaining code with preprocessor directives— the probability of finding dependencies

increases a lot. Taking the Sylpheed product line as example, only 274 (7.54%) of its

methods have directives and 197 (5.42%) have feature dependencies. Therefore, 71.9% of

4.2 EMPIRICAL STUDIES 43

methods with directives have feature dependencies (see MDe/MDi column in Table 4.3).

Our data reveals that 72.49%±17.69% of the methods with directives have dependencies.

This answers our second research question related to how often methods with preprocessor

directives contain feature dependencies. All results of the major study can be verified on

the published paper [RQB+11].

4.2.4 Second Study: Complexity and Feature Dependencies

Although we have provided data on how often feature dependencies may occur in practice,

we still need to complement this study to better understand feature dependencies and to

analyze to what extent they might be a problem in practice.

Firstly, we focus on complexity. By complexity, we mean metrics such as (i) source

lines of code; (ii) number of methods; (iii) number of features; and (iv) number of different

kinds of preprocessor directives, like #ifdef, #ifndef, #elif etc. By using these metrics

we then investigate if there are correlations between software complexity and feature

dependencies. So, our second study consists of answering the following research questions:

Research Question 1: How program size is related to feature dependencies?

Research Question 2: How number of features is related to feature dependencies?

Research Question 3: How number of different kinds of preprocessor directives is re-

lated to feature dependencies?

Besides this correlation study, we also provide data with respect to where feature

dependencies occur. By “where” we mean the different kinds of preprocessor directives.

Therefore, we also answer the following research question:

Research Question 4: How often do feature dependencies occur for each kind of pre-

processor directive?

Answering the three first questions, its important to better understand how software

complexity correlates with the occurrence of feature dependencies. Answering the last

question is important for assessing how often we can face a feature dependency on each

preprocessor directive.

To assess the research questions stated above, we analyzed the data of Table 4.4. Not

surprisingly, our data reveals that dependencies of a software system increase with its

size. If we take a small program like BestLapCC (342 methods) and a large software

4.2 EMPIRICAL STUDIES 44

like FreeBSD (130320 methods), we notice that the number of dependencies increase

substantially: 408 to 210408, respectively. We confirm this by the correlations between

the metrics NoM and NoDe as well as SLoC and NoDe (see Figure 4.2), that correlates

with a moderate degree. It turns out that large software systems usually have more

method definitions. So, the probability of finding directives increases. Consequently, the

probability of finding dependencies increases as well. This answer our first question about

influence of program size on feature dependencies.

(a) NoM/NoDe - correlation coefficient:
0.55

(b) SLoC/NoDe - correlation coefficient:
0.57

Figure 4.2: Correlations between NoM and NoDe, and SLoC and NoDe metrics.

To answer the second research question we stated above, we look for the NoFE metric.

Our data reveals that the number of dependencies increases with the increasing of feature

expressions definitions. Like program size, we confirm this by the correlation between

the NoFE and NoDe metrics, which correlate tightly—0.77 (see Figure 4.3).

We can answer the third question from data presented in Figure 4.4. The number

of feature dependencies increases with the use of different kinds of directives in software

programs. For example, if we take a program with four different kinds of directives like

sendmail, we can notice that the number of dependencies is low: 243. On other hand, if

we take a program with the same size and use five kinds of directives like Openvpn, we can

notice that the number of dependencies increases substantially: 2700. We confirm this by

the correlation between the NoKDi and NoDe metrics, which correlate moderately—0.32.

Complementing the answer for the third question, we can notice that for all sys-

tems, feature dependencies occurred in at least two kinds of directives. Also, no system

4.2 EMPIRICAL STUDIES 45

Figure 4.3: Correlation between NoFE and NoDe metrics. Correlation coefficient: 0.77.

Figure 4.4: Correlation between NoKDi and NoDe metrics. Correlation coefficient: 0.32.

presented feature dependencies in more than five kinds of preprocessor directives (see

NoDiDe column in Table 4.4). Even in large projects such as kernel linux and freebsd

there were no dependencies involving some kinds of directives.

We provide data to answer the fourth question in Table 4.2. Notice that feature

dependency occurrence is most frequent when using the #if directive. On average, 48.8%

of dependencies from 45 projects we analyzed occur in this directive. Furthermore, as

the use of #else and #elif directives has to be preceded by #if or #ifdef declaration,

the occurrence of feature dependencies on these directives is lower—10.6% and 1.6%

respectively.

4.2 EMPIRICAL STUDIES 46

Table 4.2: Dependency occurrence on cpp’s variability mechanisms.

#elif #else #if #ifdef #ifndef
Mean 1.6% 10.6% 48.8% 37.9% 7.9%
SD 3.6% 8.3% 19.6% 12.7% 4.3%

We do not present data about some directives—#debug, #elifdef, #elifndef and

#mdebug—in Table 4.2, since the number of feature dependencies when using these direc-

tives is not relevant. The #debug and #elifdef directives have 12 and 104 dependency

occurrences, respectively, which means less than 0.01% of the total number of dependen-

cies. There were no dependency occurrences involving #mdebug and #elifndef directives.

In our analysis, we notice that developers implement debug system messages in most

cases by using standard output functions (System.out.print() in Java and printf()

in C) within other directives, such as #if or #ifdef, instead of using the #debug or

#mdebug directives. Moreover, the use of #elifdef and #elifndef may be replaced by

combinations between #ifdef and #ifndef with language logical operators, reducing

their use and, consequently, the dependency occurrence.

4.2.5 Third Study: Interprocedural Analysis

Additionally to the two studies we have just presented, we intend to perform an interpro-

cedural analysis regarding the occurrence of feature dependencies on SPL. The idea is to

complement the first study regarding the occurrence of feature dependencies through an

interprocedural analysis. By interprocedural we can understand the occurrence of fea-

ture dependencies in two or more methods of the same file 10, as we show in the example

below.

Listing 4.4 illustrates an example where there is an occurrence of an interprocedural

feature dependency. The code snippet was extracted from Clamav product line. Clamav

is an open source antivirus engine designed for detecting trojans, viruses, malwares and

other malicious treats 11. In this example, we can see in line 5 that the variable len is

assigned with the result of a call for the method send fdpass. The send fdpass method

receive two params: sockd and filename. Notice that this call is held on the body of

dsresult method and is encompassed by #ifdef directive, which represent the feature

HAVE FD PASSING. Considering the variable sockd, we can notice that it is used on the

body of send fdpass method, in a mandatory feature (see line 13), that is: we use the

10At first, we intend to consider only interprocedural dependencies on methods of the same file.
11http://www.clamav.net/

4.2 EMPIRICAL STUDIES 47

sockd variable as param of send fdpass method, which is called on body of dsresult

method. The call for send fdpass method is a statement of HAVE FD PASSING feature

and the variable is used on the mandatory feature of the method body. This characterizes

an interprocedural feature dependency.

Listing 4.4: Interprocedural Feature dependency occurrence on Clamav.

1 int d s r e s u l t (int sockd , int scantype , const char � f i l ename , int �pr intok ,

int � e r r o r s) {
2 . . .

3 #i f d e f HAVE FD PASSING

4 case FILDES :

5 l en = send fdpas s (sockd , f i l ename) ;

6 break ;

7 #end i f

8 . . .

9 }
10

11 stat ic int s end fdpas s (int sockd , const char � f i l ename) {
12 . . .

13 i f (sendln (sockd , "zFILDES" , 8)) {
14 . . .

15 }
16 . . .

17 }

This study aims to emphasize the benefits of using emergent interfaces concerning SPL

maintenance tasks. We conduct a study based on comparing the effort when the developer

is using emergent interfaces and when he is not using emergent interfaces approach to

perform SPLs maintenance tasks. To do this, we measure the effort through the number of

fragments (NoFa) and the number of the features (NoFe) which the developer would have

to analyze to perform a maintenance on a variable shared among features and involved

in an interprocedural dependency.

Table 4.5 present the data about our analysis. According to the results, the metrics

data vary significantly across the product lines. Some product lines have few or have no

data about interprocedural analysis (see BestLapCC and Juggling product lines). This

occur mainly on Java projects: as a file tends to comprise only one Java class, the method

calls tend to reference methods declared on other classes, which are defined on another

files. And in this study, we are concerned about feature dependencies on methods of the

same file.

4.2 EMPIRICAL STUDIES 48

Thus, following the convention “average ± standard deviation”, our data reveals that

when using emergent interfaces approach, developers has a gain of 56.28%±21.70% related

to the number of fragments and 46.29%± 19.73% related to the number of features they

would have to analyze, compared to not using emergent interfaces. This reinforce the

benefits of using emergent interfaces concerning SPL maintenance tasks, mainly when

interprocedural dependencies scenarios are considered.

4.2.6 Threats to Validity

In this section we discuss the threats to validity of the studies, presenting how the results

could be affected.

Other Kinds of Dependencies

In our research, we care about dependencies caused by the sharing of an attribute declared

into a method body. Our assumptions about simple dependencies did not consider other

kinds of feature dependencies, such as chain of assignments, control flow dependencies,

dependencies related to concurrent access, among others. The idea was to provide an

initial assessment on feature dependencies and to motivate researchers to extend the

work aiming to perform other analysis covering other kinds of dependencies, as we cite

previously.

Counting of Lines of Code - SLoC Metric

For measuring the SLoC metric, we rely on tool CLoC. Although some tool limitations

stated by the authors, as to identify some cases of comments constructs, we believe that

these are not common and do not influence significantly the results.

Feature Expression Equality

Semantic equivalence of feature expressions like A && B and B && A are missing by

our analysis. Our tool performs the analysis by using string comparison to check if

different code fragments belong to the same expression. However, such cases are not

common [LAL+10] and does not significantly influence the results.

Converting of Source Code on XML Documents

4.3 SUMMARY 49

For converting the source code in AST form, we rely on tool scr2srcml. To compute the

dependencies and measure the NoFE metric, our tool relies blindly on this mapping. We

believe that the extensive test suite used by the authors of src2srcml is reliable to verify

it satisfactorily.

Number of Samples

Despite the use of several projects to perform the assessments, the number of analyzed

systems limits the power of the correlations, since each one is equivalent to the sample.

4.3 SUMMARY

In this chapter we present the studies we performed concerning feature dependencies.

We stated our assumptions about feature dependencies, presented the concept of simple

dependencies, and showed examples of occurrence of these dependencies in real software

programs. We then presented our empirical studies: we defined the metrics used on the

studies, presented the research questions which guided the studies and explained how we

collected the data about the projects. The results of each study were presented, showing

a considerable amount of data about the projects and answering the research questions

stated for each study.

4.3 SUMMARY 50
T
ab

le
4.
3:

D
at
a
an

al
y
si
s
-
P
ar
t
I.

V
e
rs
io
n
:
sy
st
em

ve
rs
io
n
;

L
a
n
g
u
a
g
e
:
p
ri
m
ar
y
sy
st
em

la
n
gu

ag
e;

S
L
o
C
:
so
u
rc
e
li
n
es

of
co
d
e;

N
o
M

:
n
u
m
b
er

of
m
et
h
o
d
s;

M
D
i:
m
et
h
o
d
s
w
it
h
d
ir
ec
ti
ve
s;

N
o
D
iO

:
n
u
m
b
er

of
d
ir
ec
ti
ve
s
o
cc
u
rr
en
ce
;

M
D
e
:
m
et
h
o
d
s
w
it
h

d
ep
en
d
en
ci
es
;

M
D
e
/
M
D
i:
fr
eq
u
en
cy

of
d
ep
en
d
en
ci
es

in
m
et
h
o
d
s
w
it
h
d
ir
ec
ti
ve
s.

N
o
D

iO
S
y
s
t
e
m

V
e
r
s
io

n
L
a
n
g
u
a
g
e

S
L
o
C

N
o
M

M
D

i
#

d
e
b
u
g

#
e
li
f

#
e
li
fd

e
f

#
e
li
fn

d
e
f

#
e
ls
e

#
if

#
if
d
e
f

#
if
n
d
e
f

#
m

d
e
b
u
g

M
D

e
M

D
e
/
M

D
i

c
h
e
ro
k
e
e

1
.0
.8

C
5
2
7
7
6

1
7
7
3

1
5
8

0
1
9

0
0

1
1
6

8
0

2
4
6

2
3

0
1
2
0

7
5
,9
5
%

c
la
m
a
v

0
.9
6
.4

C
1
3
9
0
5
4

3
2
8
4

3
0
7

0
3
8

0
0

2
3
0

1
5
7

4
9
6

6
4

0
2
2
6

7
3
,6
2
%

d
b

5
.1
.1
9

C
3
8
1
3
1
5

1
0
6
3
6

9
6
5

0
2
2

0
0

6
4
6

8
3
1

1
0
5
4

7
4
0

0
8
1
9

8
4
,8
7
%

d
ia

0
.9
7
.1

C
1
3
7
9
3
7

5
2
6
2

1
6
0

0
2

0
0

9
6

1
2
8

1
2
8

1
1

0
1
0
3

6
4
,3
8
%

e
m
a
c
s

2
3
.2

C
2
3
2
7
2
8

4
3
3
3

2
4
2

0
8

0
0

1
6
7

1
6
6

3
7
0

6
7

0
1
0
5

4
3
,3
9
%

fr
e
e
b
sd

8
.1
.0

C
5
6
9
4
6
2
0

1
3
0
3
2
0

1
1
7
1
2

0
4
0
7

0
0

5
2
1
0

7
5
0
3

1
6
1
2
3

2
8
8
7

0
8
5
6
3

7
3
,1
1
%

g
c
c

4
.5
.1

C
1
7
4
6
9
6
3

5
0
7
7
7

3
0
2
1

0
1
7
5

0
0

3
3
3
0

5
2
0
0

2
5
5
7

6
8
2

0
2
0
1
0

6
6
,5
3
%

g
h
o
st
sc
ri
p
t

9
.0
0

C
6
7
7
0
2
0

1
7
6
4
8

1
2
7
9

0
1
3

0
0

5
6
9

7
7
2

1
8
9
5

9
9

0
1
0
3
5

8
0
,9
2
%

g
im

p
2
.6
.1
1

C
5
9
6
0
8
1

1
6
9
9
2

4
8
7

0
1
2

0
0

1
7
4

2
4
0

4
3
9

6
5

0
3
1
0

6
3
,6
6
%

g
li
b
c

2
.1
2
.1

C
5
9
5
5
2
5

7
7
4
8

7
7
7

0
5
0

0
0

5
5
8

4
4
6

8
5
2

2
1
4

0
4
4
5

5
7
,2
7
%

g
n
u
m
e
ri
c

1
.1
0
.1
1

C
2
4
4
9
6
8

8
7
1
1

4
2
8

0
1

0
0

7
5

2
9
1

3
4
3

6
0

0
1
7
0

3
9
,7
2
%

g
n
u
p
lo
t

4
.4
.2

C
7
2
5
5
6

1
8
0
4

2
7
8

0
1
6

0
0

2
0
6

2
2
1

5
3
4

1
0
0

0
1
7
9

6
4
,3
9
%

h
tt
p
d

2
.2
.1
7

C
2
1
4
0
0
0

4
3
7
9

5
3
4

0
1
5

0
0

2
9
7

5
5
5

6
1
6

7
0

0
4
1
1

7
6
,9
7
%

ir
ss
i

0
.8
.1
5

C
4
9
0
8
5

2
8
4
3

5
7

0
0

0
0

2
4

4
5
9

2
0

0
4
2

7
3
,6
8
%

li
b
x
m
l2

2
.7
.7

C
1
8
8
9
6
0

5
3
2
4

1
4
3
3

0
3
6

0
0

1
6
0

9
5
4

1
3
2
5

2
2

0
1
2
2
0

8
5
,1
4
%

li
g
h
tt
p
d

1
.4
.2
8

C
3
7
9
5
3

8
3
1

1
3
9

0
9

0
0

1
0
5

8
1

2
5
6

4
2

0
9
7

6
9
,7
8
%

li
n
u
x

2
.6
.3
6

C
7
1
2
1
9
4
9

2
0
8
0
4
8

1
0
1
9
8

0
1
4
7

0
0

2
4
5
8

4
4
4
0

1
2
0
1
4

1
0
9
1

0
7
6
3
7

7
4
,8
9
%

ly
n
x

2
.8
.7

C
1
1
1
4
7
8

2
3
4
9

5
0
3

0
1
1

0
0

4
3
5

4
5
8

1
2
9
1

2
5
8

0
3
4
3

6
8
,1
9
%

m
in
ix

3
.1
.1

C
1
1
3
7
6
8

3
1
1
4

1
4
1

0
2

0
0

9
0

1
7
0

7
3

2
7

0
7
7

5
4
,6
1
%

M
p
la
y
e
r

1
.0
rc
2

C
4
7
5
1
6
0

1
1
7
3
0

1
4
0
8

0
1
6
4

0
0

7
5
1

7
8
2

2
0
0
7

2
1
0

0
9
9
9

7
0
,9
5
%

M
P
S
o
lv
e

2
.2

C
9
5
6
2

4
1
1

7
0

0
0

0
3

1
0

1
0

0
4

5
7
,1
4
%

o
p
e
n
ld
a
p

2
.4
.2
3

C
2
2
3
4
0
9

4
0
2
6

5
1
6

0
5
4

0
0

2
3
9

1
9
9

9
9
4

5
8

0
4
0
1

7
7
,7
1
%

o
p
e
n
v
p
n

2
.1
.3

C
4
8
8
5
0

1
6
9
4

3
0
4

0
4
4

0
0

1
0
1

2
0
7

3
8
7

1
2

0
2
5
7

8
4
,5
4
%

p
a
rr
o
t

2
.9
.1

C
1
0
4
3
2
2

1
8
1
3

1
1
1

0
0

0
0

9
0

3
6

5
0

2
0

3
1

2
7
,9
3
%

p
h
p

5
.3
.3

C
6
6
4
6
8
3

1
0
4
3
6

1
2
2
9

0
9
4

0
0

8
2
1

1
2
2
2

1
4
6
1

5
0
3

0
9
2
7

7
5
,4
3
%

p
id
g
in

2
.7
.5

C
2
9
2
3
1
1

1
0
9
6
5

5
7
7

0
8

0
0

2
8
1

3
2
9

5
4
5

8
9

0
3
7
3

6
4
,6
4
%

p
o
st
g
re
sq
l

8
.4
.5

C
5
6
4
9
6
1

1
3
1
9
9

8
3
5

0
4
9

0
0

5
6
8

1
7
0

1
0
8
7

1
9
8

0
6
0
0

7
1
,8
6
%

p
ri
v
o
x
y

3
.0
.1
6

C
2
6
2
2
2

4
8
2

1
0
1

0
2
7

0
0

1
2
1

7
8

2
6
6

4
0

0
8
7

8
6
,1
4
%

P
y
th
o
n

2
.7

C
3
6
2
0
7
1

1
2
5
9
0

3
4
7
3

0
7
1

0
0

6
0
1

5
3
3

2
1
8
3

2
8
2
4

0
6
3
2

1
8
,2
0
%

se
n
d
m
a
il

8
.1
4
.4

C
8
5
6
0
0

1
1
9
5

5
4

0
0

0
0

4
7

8
4

4
2

1
0

9
1
6
,6
7
%

sq
li
te

3
.7
.3

C
1
0
4
5
9
4

3
8
0
7

4
0
5

0
9

0
0

2
0
0

2
0
7

3
1
0

3
8
3

0
3
4
7

8
5
,6
8
%

su
b
v
e
rs
io
n

1
.6
.1
3

C
5
5
8
7
4
6

4
8
9
4

1
9
7

0
4

0
0

1
0
1

1
5
4

1
6
9

1
8

0
1
3
2

6
7
,0
1
%

sy
lp
h
e
e
d

3
.0
.3

C
1
0
2
9
8
3

3
6
3
4

2
7
5

0
3

0
0

1
8
7

2
8
6

2
0
6

3
7

0
1
9
2

6
9
,8
2
%

tc
l

8
.5
.9

C
1
2
3
7
7
8

2
7
6
1

2
9
4

0
1
1

0
0

1
5
2

2
0
2

6
5
2

1
1
9

0
2
3
2

7
8
,9
1
%

to
te
m

3
.1
.0

C
3
3
7
4
6

1
4
9
2

3
5

0
1

0
0

1
0

1
7

2
4

1
0

2
1

6
0
,0
0
%

v
im

7
.3

C
2
7
4
8
5
8

6
3
5
4

7
0
2

0
1
0

0
0

2
7
7

3
1
1

1
4
4
8

8
8

0
3
4
5

4
9
,1
5
%

x
fi
g

3
.2
.5
b

C
7
1
7
4
0

2
1
1
2

8
3

0
0

0
0

4
2

2
8

1
3
2

3
5

0
4
7

5
6
,6
3
%

x
in
e
li
b

1
.1
.1
9

C
3
8
3
7
2
7

1
0
5
0
1

1
0
3
7

0
5
6

0
0

5
5
2

5
7
4

1
3
7
2

1
9
2

0
7
5
1

7
2
,4
2
%

x
o
rg
se
rv
e
r

1
.7
.1

C
3
5
6
3
0
0

1
1
4
2
5

1
1
6
0

0
3
0

0
0

3
3
5

9
0
2

1
2
2
7

1
3
2

0
8
3
6

7
2
,0
7
%

x
te
rm

2
.6
.1

C
4
9
7
5
2

1
0
8
0

2
6
6

0
2
7

0
0

1
3
6

6
7
9

2
5
5

4
1

0
2
2
1

8
3
,0
8
%

B
e
st
L
a
p
C
C

1
.0

J
a
v
a

7
3
4
0

3
4
2

7
0

0
9
1

2
0

4
4

7
9

1
7

5
4

0
3
4

4
8
,5
7
%

J
u
g
g
li
n
g

1
.0

J
a
v
a

8
2
7
9

4
0
7

6
3

0
3
9

2
0

2
9

1
3
5

1
7

7
0

3
6

5
7
,1
4
%

la
m
p
ir
o

1
.0

J
a
v
a

3
1
7
7
4

1
5
3
8

1
2
4

2
8

0
0

0
0

0
2
6

1
0

1
2
8

1
0

8
,0
6
%

m
o
b
il
e
-r
ss

1
.0

J
a
v
a

2
7
8
7
9

9
0
2

2
4
3

0
0

6
0

3
9

0
7
3
1

3
9

0
1
9
4

7
9
,8
4
%

M
o
b
il
e
M
e
d
ia

0
.9

J
a
v
a

5
3
0
5

2
7
6

2
2

0
4

0
0

1
1
6

6
1

0
0

1
3

5
9
,0
9
%

4.3 SUMMARY 51
T
ab

le
4.
4:

D
at
a
an

al
y
si
s
-
P
ar
t
II
.

S
L
o
C
:
so
u
rc
e
li
n
es

of
co
d
e;

N
o
M

:
n
u
m
b
er

of
m
et
h
o
d
s;

N
o
F
E
:
n
u
m
b
er

of
fe
at
u
re

ex
p
re
ss
io
n
s;

N
o
D
e
:
n
u
m
b
er

of
d
ep
en
d
en
ci
es
;

N
o
D
D
i:
n
u
m
b
er

of
d
ep
en
d
en
cy

o
cc
u
rr
en
ce

on
ea
ch

d
ir
ec
ti
ve
;

N
o
K
D
i:
n
u
m
b
er

of
k
in
d
s
of

d
ir
ec
ti
ve
s;

N
o
D
iD
e
:
n
u
m
b
er

of
d
ir
ec
ti
ve
s
w
it
h
d
ep
en
d
en
ci
es
.

N
o
D

D
i

S
y
s
t
e
m

S
L
o
C

N
o
M

N
o
F
E

N
o
D

e
#

d
e
b
u
g

#
e
li
f

#
e
li
fd

e
f

#
e
li
fn

d
e
f

#
e
ls
e

#
if

#
if
d
e
f

#
if
n
d
e
f

#
m

d
e
b
u
g

N
o
K

D
i

N
o
D

iD
e

c
h
e
ro
k
e
e

5
2
7
7
6

1
7
7
3

3
4
1

2
1
8
4

0
1
4
7

0
0

6
8
8

1
6
8

1
2
5
9

1
5
4

0
5

5
c
la
m
a
v

1
3
9
0
5
4

3
2
8
4

6
8
1

3
7
2
4
0

0
2
4
9

0
0

1
9
1
9

6
7
7

3
5
4
1
5

1
9
4

0
5

5
d
b

3
8
1
3
1
5

1
0
6
3
6

2
4
4
2

4
9
4
9
5

0
1
2
3

0
0

2
5
8
7

8
3
7
4

1
4
8
3
7

2
8
4
3
1

0
5

5
d
ia

1
3
7
9
3
7

5
2
6
2

3
0
3

1
0
5
5

0
0

0
0

4
6
9

2
3
9

3
6
9

2
4

0
5

4
e
m
a
c
s

2
3
2
7
2
8

4
3
3
3

5
8
3

1
1
8
6

0
4

0
0

4
0
3

1
7
2

4
3
1

2
5
2

0
5

5
fr
e
e
b
sd

5
6
9
4
6
2
0

1
3
0
3
2
0

2
1
0
9
1

2
1
0
4
0
8

0
2
9
7
5

0
0

3
5
9
2
4

6
7
3
1
9

1
1
3
9
6
6

1
2
3
1
0

0
5

5
g
c
c

1
7
4
6
9
6
3

5
0
7
7
7

5
8
4
6

2
9
5
1
6
7

0
1
1
5
7

0
0

6
7
2
2

2
8
4
4
6
4

6
3
8
5

2
6
3
4

0
5

5
g
h
o
st
sc
ri
p
t

6
7
7
0
2
0

1
7
6
4
8

2
2
6
5

1
5
5
5
0

0
3
8
6

0
0

2
1
3
8

4
3
6
5

9
4
8
4

4
0
3

0
5

5
g
im

p
5
9
6
0
8
1

1
6
9
9
2

6
5
1

3
3
6
1

0
4
9

0
0

8
8
9

9
8
8

1
5
1
0

1
8
2

0
5

5
g
li
b
c

5
9
5
5
2
5

7
7
4
8

1
3
1
1

9
2
8
6

0
3
6
3

0
0

2
1
3
5

2
3
9
2

4
8
9
0

1
4
4
0

0
5

5
g
n
u
m
e
ri
c

2
4
4
9
6
8

8
7
1
1

5
1
3

9
1
5
0

0
1

0
0

3
1
1

9
9

7
9
4
4

8
6
4

0
5

5
g
n
u
p
lo
t

7
2
5
5
6

1
8
0
4

7
3
5

6
6
6
2

0
4
7

0
0

7
1
2

1
0
0
0

5
0
9
8

2
0
0

0
5

5
h
tt
p
d

2
1
4
0
0
0

4
3
7
9

1
0
8
7

7
1
4
1

0
8
1

0
0

1
3
2
1

2
6
1
9

3
6
4
8

2
6
0

0
5

5
ir
ss
i

4
9
0
8
5

2
8
4
3

8
9

2
1
3

0
0

0
0

6
2

0
1
4
4

1
1

0
4

3
li
b
x
m
l2

1
8
8
9
6
0

5
3
2
4

1
9
2
8

5
1
2
5

0
5
7

0
0

4
7
1

9
6
4

4
0
5
3

3
7

0
5

5
li
g
h
tt
p
d

3
7
9
5
3

8
3
1

3
6
1

1
9
4
7

0
1
7
9

0
0

1
9
5

4
0

1
3
6
2

2
1
9

0
5

5
li
n
u
x

7
1
2
1
9
4
9

2
0
8
0
4
8

1
4
9
6
4

1
0
9
3
9
4

0
5
3
7

0
0

1
0
8
0
3

2
0
9
8
9

7
6
3
8
2

4
0
1
8

0
5

5
ly
n
x

1
1
1
4
7
8

2
3
4
9

1
5
5
8

7
9
1
7

0
8

0
0

2
0
4
5

1
6
4
7

4
3
5
9

7
3
7

0
5

5
m
in
ix

1
1
3
7
6
8

3
1
1
4

2
4
1

4
6
4

0
1

0
0

8
7

2
3
7

1
0
3

4
0

0
5

5
M
p
la
y
e
r

4
7
5
1
6
0

1
1
7
3
0

2
7
4
8

2
0
5
0
3

0
1
3
8
8

0
0

5
5
1
8

3
2
6
1

1
1
0
1
9

8
2
3

0
5

5
M
P
S
o
lv
e

9
5
6
2

4
1
1

1
2

8
0

0
0

0
2

6
0

0
0

3
2

o
p
e
n
ld
a
p

2
2
3
4
0
9

4
0
2
6

1
0
3
0

5
8
5
6

0
2
1
6

0
0

7
7
7

8
4
5

4
6
0
0

1
0
7

0
5

5
o
p
e
n
v
p
n

4
8
8
5
0

1
6
9
4

6
0
2

2
7
0
0

0
3
8
7

0
0

1
8
6

8
0
6

1
3
5
9

5
4

0
5

5
p
a
rr
o
t

1
0
4
3
2
2

1
8
1
3

9
9

2
2
0

0
0

0
0

9
9

4
7

8
1

7
0

4
4

p
h
p

6
6
4
6
8
3

1
0
4
3
6

2
6
9
4

4
8
2
7
5

0
5
4
7

0
0

7
3
7
3

2
8
7
8
0

1
2
9
1
4

7
1
6
9

0
5

5
p
id
g
in

2
9
2
3
1
1

1
0
9
6
5

9
4
6

5
7
9
4

0
1
6

0
0

1
0
3
2

6
1
3

4
0
1
0

5
2
2

0
5

5
p
o
st
g
re
sq
l

5
6
4
9
6
1

1
3
1
9
9

1
4
6
4

1
1
9
0
7

0
2
7
3

0
0

2
2
0
3

4
9
5
6

4
7
2
5

7
6
0

0
5

5
p
ri
v
o
x
y

2
6
2
2
2

4
8
2

3
3
8

2
1
1
8

0
9
1

0
0

2
9
7

5
1
1

1
3
6
5

2
7

0
5

5
P
y
th
o
n

3
6
2
0
7
1

1
2
5
9
0

5
4
8
9

2
2
6
9
4

0
4
5
8
2

0
0

1
9
5
3

1
0
4
7
2

7
4
0
3

5
4
4

0
5

5
se
n
d
m
a
il

8
5
6
0
0

1
1
9
5

8
9

2
4
3

0
0

0
0

5
2

2
7
4

1
0
5

2
0

4
4

sq
li
te

1
0
4
5
9
4

3
8
0
7

9
1
6

1
0
0
1
4

0
5
8

0
0

9
3
7

1
1
9
1

2
1
6
1

7
1
1
8

0
5

5
su
b
v
e
rs
io
n

5
5
8
7
4
6

4
8
9
4

2
8
3

1
2
7
4

0
5
0

0
0

1
4
1

4
2
3

6
3
6

4
7

0
5

5
sy
lp
h
e
e
d

1
0
2
9
8
3

3
6
3
4

4
7
0

8
8
4
1

0
1
6

0
0

2
6
9
5

5
2
4
2

1
1
3
5

7
7

0
5

5
tc
l

1
2
3
7
7
8

2
7
6
1

8
6
6

6
1
8
4

0
5
5

0
0

5
0
4

2
6
3
2

1
7
8
4

1
7
3
6

0
5

5
to
te
m

3
3
7
4
6

1
4
9
2

4
7

8
6

0
0

0
0

7
1
8

6
1

0
0

5
3

v
im

2
7
4
8
5
8

6
3
5
4

1
5
2
5

2
8
7
8

0
0

0
0

5
4
9

4
3
8

2
1
3
9

1
8
4

0
5

4
x
fi
g

7
1
7
4
0

2
1
1
2

1
3
2

8
0
1

0
0

0
0

1
8
3

1
4
1

3
7
1

1
3
1

0
4

4
x
in
e
li
b

3
8
3
7
2
7

1
0
5
0
1

1
7
9
3

1
7
8
7
9

0
5
1
9

0
0

5
4
0
0

3
3
2
6

7
3
3
9

2
1
7
9

0
5

5
x
o
rg
se
rv
e
r

3
5
6
3
0
0

1
1
4
2
5

1
8
4
6

7
5
3
0

0
1
7
1

0
0

9
9
9

1
7
3
4

4
7
4
1

5
6
9

0
5

5
x
te
rm

4
9
7
5
2

1
0
8
0

7
7
7

4
3
3
8

0
1
1
0

0
0

6
9
3

3
2
9
3

7
0
9

1
9
0

0
5

5
B
e
st
L
a
p
C
C

7
3
4
0

3
4
2

1
9
6

4
0
8

0
1
4
6

0
0

2
9

1
4
4

7
6

9
8

0
6

5
J
u
g
g
li
n
g

8
2
7
9

4
0
7

1
8
1

3
6
4

0
4
0

0
0

5
9

1
5
7

1
0
8

2
7

0
6

5
la
m
p
ir
o

3
1
7
7
4

1
5
3
8

1
2
9

4
2

1
2

0
0

0
0

0
0

3
0

0
4

2
m
o
b
il
e
-r
ss

2
7
8
7
9

9
0
2

3
9
6

1
5
7
1

0
0

1
0
4

0
8
1

0
1
3
8
4

6
4

0
5

4
M
o
b
il
e
M
e
d
ia

5
3
0
5

2
7
6

6
7

2
9
7

0
0

0
0

0
1
9

3
3
4

0
0

4
2

4.3 SUMMARY 52

T
ab

le
4.
5:

D
at
a
an

al
y
si
s
-
P
ar
t
II
I.

S
L
o
C
:
so
u
rc
e
li
n
es

of
co
d
e;

N
o
M

:
n
u
m
b
er

of
m
et
h
o
d
s;

E
I:
em

er
ge
n
t
in
te
rf
ac
es
;

N
o
n
-E
I:
n
on

-e
m
er
ge
n
t
in
te
rf
ac
es
;

N
o
F
ra
g
:
n
u
m
b
er

of
fr
ag
m
en
ts
;

N
o
F
e
a
t:

n
u
m
b
er

of
fe
at
u
re
s.

E
I

N
o
n
-E

I
S
y
s
t
e
m

S
L
o
C

N
o
M

N
o
F
r
a
g

N
o
F
e
a
t

N
o
F
r
a
g

N
o
F
e
a
t

c
h
e
ro
k
e
e

5
2
7
7
6

1
7
7
3

1
8
2

9
1

6
2
7

2
0
8

c
la
m
a
v

1
3
9
0
5
4

3
2
8
4

2
6
2

2
5
0

7
3
5

5
0
4

d
b

3
8
1
3
1
5

1
0
6
3
6

2
7
8
5

2
5
9
0

7
5
5
2

5
9
2
0

d
ia

1
3
7
9
3
7

5
2
6
2

2
3

2
2

8
9

6
8

e
m
a
c
s

2
3
2
7
2
8

4
3
3
3

4
4
3

3
8
5

1
4
2
8

9
2
5

fr
e
e
b
sd

5
6
9
4
6
2
0

1
3
0
3
2
0

9
2
7
2

7
3
8
5

2
7
3
5
3

1
5
4
8
6

g
c
c

1
7
4
6
9
6
3

5
0
7
7
7

2
3
0
0

2
0
4
8

7
3
8
1

4
8
6
0

g
h
o
st
sc
ri
p
t

6
7
7
0
2
0

1
7
6
4
8

5
4
9

4
6
2

1
8
9
9

1
3
5
8

g
im

p
5
9
6
0
8
1

1
6
9
9
2

2
3
5

2
0
3

7
6
1

5
2
2

g
li
b
c

5
9
5
5
2
5

7
7
4
8

3
9
3

2
7
9

1
9
5
9

9
3
8

g
n
u
m
e
ri
c

2
4
4
9
6
8

8
7
1
1

3
0
2

2
8
5

7
2
2

5
1
2

g
n
u
p
lo
t

7
2
5
5
6

1
8
0
4

2
7
9

2
4
2

6
2
4

4
4
0

h
tt
p
d

2
1
4
0
0
0

4
3
7
9

3
8
2

2
9
3

1
2
9
7

7
8
7

ir
ss
i

4
9
0
8
5

2
8
4
3

3
2

2
9

4
9

4
1

li
b
x
m
l2

1
8
8
9
6
0

5
3
2
4

8
6
2
4

6
9
9
1

2
5
2
8
8

1
3
6
7
5

li
g
h
tt
p
d

3
7
9
5
3

8
3
1

1
5
5
8

1
0
7
2

3
2
5
1

3
1
3
2

li
n
u
x

7
1
2
1
9
4
9

2
0
8
0
4
8

1
7
5

1
7
3

3
3
9

2
6
2

ly
n
x

1
1
1
4
7
8

2
3
4
9

8
2
4

7
7
6

2
9
7
6

1
9
2
3

m
in
ix

1
1
3
7
6
8

3
1
1
4

1
5
2

1
2
2

3
6
5

2
6
2

M
p
la
y
e
r

4
7
5
1
6
0

1
1
7
3
0

9
3
6

8
6
2

2
3
5
1

1
7
8
8

M
P
S
o
lv
e

9
5
6
2

4
1
1

0
0

0
0

o
p
e
n
ld
a
p

2
2
3
4
0
9

4
0
2
6

2
3
9

2
2
5

8
5
9

5
7
4

o
p
e
n
v
p
n

4
8
8
5
0

1
6
9
4

1
1
0

9
4

2
3
5

1
7
4

p
a
rr
o
t

1
0
4
3
2
2

1
8
1
3

1
3

1
0

1
0
6

8
8

p
h
p

6
6
4
6
8
3

1
0
4
3
6

2
4
6
1

2
1
4
6

5
5
3
1

3
8
4
3

p
id
g
in

2
9
2
3
1
1

1
0
9
6
5

4
0
6

3
2
8

1
3
7
1

6
6
0

p
o
st
g
re
sq
l

5
6
4
9
6
1

1
3
1
9
9

1
0
1
6

9
7
2

1
8
2
3

1
3
4
1

p
ri
v
o
x
y

2
6
2
2
2

4
8
2

9
7

7
3

4
7
8

2
4
9

P
y
th
o
n

3
6
2
0
7
1

1
2
5
9
0

1
1
7
7

1
0
0
8

3
5
6
4

2
2
1
1

se
n
d
m
a
il

8
5
6
0
0

1
1
9
5

3
4
2

2
9
9

1
4
4
0

9
6
6

sq
li
te

1
0
4
5
9
4

3
8
0
7

7
2
1

6
5
7

1
2
4
1

1
0
1
5

su
b
v
e
rs
io
n

5
5
8
7
4
6

4
8
9
4

4
2
4

4
0
5

7
0
8

5
8
6

sy
lp
h
e
e
d

1
0
2
9
8
3

3
6
3
4

2
8
6

2
4
8

7
1
3

4
2
9

tc
l

1
2
3
7
7
8

2
7
6
1

1
0
4

9
9

1
9
8

1
6
1

to
te
m

3
3
7
4
6

1
4
9
2

4
4

1
8

1
2

v
im

2
7
4
8
5
8

6
3
5
4

1
1
9
7

1
0
9
1

2
9
0
0

1
7
6
5

x
fi
g

7
1
7
4
0

2
1
1
2

3
5

3
0

9
8

4
0

x
in
e
li
b

3
8
3
7
2
7

1
0
5
0
1

9
1
4

8
2
2

1
9
5
8

1
4
0
1

x
o
rg
se
rv
e
r

3
5
6
3
0
0

1
1
4
2
5

3
7
6

3
7
2

1
1
2
9

6
9
9

x
te
rm

4
9
7
5
2

1
0
8
0

3
5
2

2
9
5

9
1
9

6
0
0

B
e
st
L
a
p
C
C

7
3
4
0

3
4
2

0
0

0
0

J
u
g
g
li
n
g

8
2
7
9

4
0
7

0
0

0
0

la
m
p
ir
o

3
1
7
7
4

1
5
3
8

2
2

2
2

6
1

3
5

m
o
b
il
e
-r
ss

2
7
8
7
9

9
0
2

0
0

0
0

M
o
b
il
e
M
e
d
ia

5
3
0
5

2
7
6

9
8

1
1

1
1

CHAPTER 5

CONCLUDING REMARKS

This work presented an initial analysis of feature dependencies occurrence on SPL. We

develop a tool based on a previous work which compute a set of metrics were defined

among this work, providing a large amount of data regarding preprocessor usage and

feature dependency occurrence on SPL.

Initially, to know about the relevant studies on preprocessor usage, we perform a

literature review based on systematic mapping features. We define a review protocol,

when we specify the research questions and the methods that were used to undertake the

mapping. As result, we identify 8 empirical studies on use of conditional compilation in

software projects. From these, we answer the research questions prior defined, describing

how each one answer the questions and pointing other results identified among study.

Beyond the mapping study concerning preprocessor usage, we concentrate to analyze

the occurrence of feature dependencies on SPL. We provide an initial analysis of feature

dependencies occurrence through three empirical studies. The first one focuses on the

frequency of feature dependencies occurrence on SPL. The data show that 72.49% ±
17.69% of methods with some directive have feature dependencies.

The second study focus on understand the correlation between complexity and feature

dependencies, and where these dependencies occur. By complexity, we mean metrics such

as source lines of code, number of methods, number of features and number of different

kinds of preprocessor directives. By where we mean the different kinds of preprocessor

directives we can find feature dependencies. The data show that complexity and feature

dependencies are closely related and we present this through charts and coefficient cor-

relation for each metric defined. Moreover, we show that feature dependency occurrence

is most frequent when using the #if directive. On average, 48.8% of dependencies from

45 projects we analyzed occur in this directive.

The third study complements the first two through an interprocedural analysis, where

we compare the effort to maintain dependent features using emergent interfaces and non

emergent interfaces approaches in SPLs. We found that, when using emergent interfaces

approach, developers has a gain of 56.28%± 21.70% related to the number of fragments

and 46.29% ± 19.73% related to the number of features they would have to analyze,

53

5.1 CONTRIBUTIONS 54

compared to not using emergent interfaces.

This large amount of data, as well as the analysis performed can be a good starting

point to understand the occurrence of feature dependencies on SPL and might be used

for researchers as input to their studies in preprocessors support tools, for example.

5.1 CONTRIBUTIONS

The main contributions of this research are detailed as follows:

� A large dataset regarding preprocessor usage and feature dependencies on software

projects. The total of 45 software projects from different domains, sizes and lan-

guages were analyzed and provided a rich amount of data. Researchers can use our

data as input to their studies on programming languages or preprocessor support

tools. For example, we have a tool for Eclipse IDE that computes feature dependen-

cies. Because we use data-flow analysis, sometimes it takes a long time to compute

them. Now that we know that the feature dependencies occur more frequently in

#if and #ifdef statements (when compared to #ifndef, for instance), our tool

can focus on these directives, exchanging precision for better performance;

� A tool to compute a set of metrics regarding preprocessor usage on software projects.

Our tool extend a previous tool [LAL+10] by considering conditional compilation

directives in C and Java projects. Furthermore, our tool compute a set of metrics

regarding the occurrence of simple dependencies on software projects. Although

compute metrics about occurrence of simple dependencies, our tool can be extended

to compute other kinds of feature dependencies, as chain of assignments. Also, other

metrics computations regarding these dependencies can be implemented;

� A mapping study regarding preprocessor usage on software projects. As the study

was conducted following systematic mapping features, this allows other researchers

to replicate it, adjusting some variables, like the terms of the search string, according

the goals of their researches.

5.2 RELATED WORK

The first related work discussed here [LAL+10] investigate the way developers use prepro-

cessors to implement variability. To do so, the authors analyzed forty preprocessor-based

product lines implemented in C of different domains. They formulated research ques-

tions focused on two research area on software development: program comprehension

5.2 RELATED WORK 55

and refactoring, in the context of preprocessor-based product lines. For each area men-

tioned before, they created and computed many metrics that represent these objectives,

for instance, Number of Feature Constants (NOFC) and Lines of Feature Code (LOF)

to represent the program comprehension and Granularity (GRAN) and Type (TYPE) to

represent refactoring. Thus, to answer the research questions, they were aided by a tool

which was able to compute the metrics. We complement this work by taking feature

dependencies into consideration. We extended the tool provided by these researchers so

that we can compute metrics like number of methods with directives (MDi) and number

of methods with feature dependencies (MDe). Moreover, we also complement this work

with respect to product lines of different languages. Beyond analyze the product lines

written in C, we perform an analysis in five product lines written in Java. This allowed

us to expand our results to another class of products.

Another related work [STL10] examined the use of preprocessor-based code in systems

written in C. Directives like #ifdefs are indeed powerful, so that programmers can make

all kinds of annotations using them. Hence, developers can introduce subtle errors like

annotating a closing bracket but not the opening one. This implies in which authors

called of “undisciplined” annotation. They distinguish between “disciplined” annotations,

which hold properties useful for preprocessor-aware parsing tools so we can represent

annotations as nodes in the AST, and “undisciplined” annotations, which do not align

with this structure and complicate tool development. To do that, a set of metrics was

defined and used to compute the projects data. The authors found that the majority of

the preprocessor usage are disciplined. Specifically, they found that the case studies have

84.4% of their annotations disciplined. We also analyzed several systems, but we focus

on dependencies among features implemented with preprocessors.

Still on the studies concerning preprocessor usage, Ernst et al. analyzed the pre-

processor usage covering mainly macro definitions using #define directives [EBN02].

The authors points out that, despite their evident shortcomings, the controlled use of

preprocessors can improve portability, performance or even readability. While #define

directives are also important for tool support, conclusions based on their usage don’t

give a complete view of how other directives also effects tool support. Like our work,

they compute the occurrence of some conditional compilation directives as well. But,

differently, we did not find a lot of preprocessor usage. We focus only on methods with

conditional compilation directives, while they focus on entire software code (not only

methods). We also analyzed several kinds of conditional compilation directives, but we

focus on those that could be in a dependency relation.

5.2 RELATED WORK 56

Sincero et al. performed a study aiming to exploit the implementation variability

provided for the code with cpp directives [STLSP10]. In this study, is presented an

approach to extract a variability model directly from source code that uses conditional

compilation directives. The authors formalize the cpp directives using propositional logic

through the extraction of a boolean formula from the preprocessor-based source code,

which represents the variability of compilation units. To do that, they build a tool chain

which produces propositional formulas that can be further processed with standard Binary

Decision Diagram (BDD) packages or SAT solvers. With this, the authors conduct two

case studies. In the first, they compare the feature model provided by the cpp-based

version of the Graph Product Line (GPL) with the variability model extracted from

it source code, regarding the number of variants, blocks and directives per file. They

could find that the variability described by the feature model covers less then 2% of the

variability described in the source code, demonstrating the semantic poorness of the cpp-

based variability. In the second, they apply their approach on a very large SPL, the linux

kernel code. They could generate the boolean formulas for all source code files in less

than 30 minutes, verifying the tool performance. We also build a tool, that compute a set

of metrics regarding cpp-based variability. But we focus in understand the dependency

relations between the features implemented with this resources.

In addition to these previous studies, Adams et al. investigate if is a good idea to

refactor the use of conditional compilation into aspects [ADMTH09]. Despite the known

advantages of this technique to handle some issues of conditional compilation as code tan-

gling and code scattering, the authors were interested in for which patterns of conditional

compilation aspects make sense and whether or not current aspect technology is able to

express these patterns. They present a graphical model which offers a queryable repre-

sentation of the syntactical interaction of conditional compilation and the source code.

To evaluate their model, the authors conduct a case study on a virtual machine, which

shows that preprocessor blueprints are able to express and query for the four commonly

known patterns of conditional compilation usage, and that they allow to discover seven

additional important patterns. By correlating each pattern’s potential for refactoring into

advice and each pattern’s evolution of the number of occurrences, their show that refac-

toring into advice in the Parrot VM is a good alternative for three of the eleven patterns,

whereas for the other patterns trade-offs have to be considered. Although we analyze

a virtual machine too, we try to understand the occurrence of dependencies between

features that are implemented with use of conditional compilation directives.

5.3 FUTURE WORK 57

5.3 FUTURE WORK

As future work, we intend to perform a deeper analysis of the resulting data, trying to

understand the relations between feature dependencies and other projects aspects, such

as the programming language. Additionally, we intend to improve our tool to download

the projects and identify if they use preprocessor directives automatically, enhancing the

process of data sampling. Furthermore, we intend to improve our tool to compute other

metrics, as well as use other techniques like data-flow analysis to improve our analysis

regarding preprocessor usage and feature dependency occurrence. More specifically, we

intend to analyze other projects aspects, as follows:

� The nature of features - the features are representative (are big or small)? With

respect to granularity, they are fine or coarsed? This can categorize better the

features and, consequently, the dependencies computed;

� Other kinds of dependencies - chain of assignments and feature dependencies among

different files of the project intend to be considered to cover more dependencies

occurrences and improve the resulting data.

The idea is to provide a tool to support SPL projects which use preprocessors to

implement variability. The focus is get developers to be aware of feature dependencies

occurrence, since some variability model like configuration knowledge is used as input to

the tool.

In summary, this work provide a large amount of data regarding preprocessor usage

and feature dependency occurrence on SPL, as well as the tool used to compute this

data. Furthermore, we provide an initial analysis of feature dependencies occurrence

through three empirical studies. We believe that these analysis are a good start point to

understand the occurrence of feature dependencies on SPL and might be used together

the amount of data for researchers, language designers, tool writers, programmers and

software engineers, as input to their studies and projects.

Appendices

58

A.1 PRIMARY STUDIES 59

A.1 PRIMARY STUDIES

ID Year Source Reference

Julio Sincero, Reinhard Tartler, Daniel Lohmann
and Wolfgang Scröder-Preikschat. Efficient

PS01 2010 EI Compendex extraction and analysis of preprocessor-based
variability. SIGPLAN Not.,46(2):33-42, October
2010.
Andreas Saebjoernsen, Lingxiao Jiang, Daniel
Quinlan, and Zhendong Su. Static validation of c
preprocessor macros. In Proceedings of the 2009

PS02 2009 EI Compendex IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, pages 149-160,
Washington, DC, USA, 2009. IEEE Computer
Society.
Jörg Liebig, Sven Apel, Christian Lengauer,
Christian Kästner, and Michael Schulze. An
analysis of the variability in forty preprocessor-

PS03 2010 Scopus based software product lines. In Proceedings of the
32nd ACM/IEEE International Conference on
Software Engineering (ICSE’10), pages 105-114,
New York, NY, USA, 2010. ACM.
Jörg Liebig, Christian Kästner, and Sven Apel.
Analyzing the discipline of preprocessor
annotations in 30 million lines of c code. In

PS04 2011 Scopus Proceeding of the 10th International Conference on
Aspect Oriented Software Development (AOSD’11),
pages 191-202, New York, NY, USA, March 2011.
ACM.

PS05 2011 Scopus

Márcio Ribeiro, Felipe Queiroz, Paulo Borba,
Társis Tolêdo, Claus Brabrand, and Sérgio Soares.
On the impact of feature dependencies when
maintaining preprocessor-based software product
lines. In Proceedings of the 10th ACM international
conference on Generative programming and
component engineering, GPCE ’11, pages 23-32,
New York, NY, USA, 2011. ACM.

PS06 1992 Scopus

Henry Spencer and Geoff Collyer. #ifdef
considered harmful, or portability experience
with C news. In Proceedings of the Usenix Summer
1992 Technical Conference, pages 185-198,
Berkeley, CA, USA, June 1992. Usenix
Association.

A.1 PRIMARY STUDIES 60

PS07 2009 Scopus

Bram Adams, Wolfgang De Meuter, Herman Tromp,
and Ahmed E. Hassan. Can we refactor conditional
compilation into aspects? In Proceedings of the 8th
ACM international conference on Aspect-oriented
software development, AOSD’09, pages 243-254,
New York, NY, USA, 2009. ACM.

PS08 2002 Scopus

Michael D. Ernst, Greg J. Badros, and David
Notkin. An empirical analysis of c preprocessor use.
IEEE Trans. Softw. Eng., 28:1146-1170, December
2002.
Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna,
Mario Monteiro, Uirá Kulesza, Alessandro Garcia,
Sérgio Soares, Fabiano Ferrari, Safoora Khan,
Fernando Castor Filho and Francisco Dantas.

PS09 2008 Other Evolving software product lines with aspects: an
empirical study on design stability. Proceedings of
the 30th international conference on Software
engineering, ICSE’08, pages 261-270, New York, NY,
USA, 2008. ACM.
Marcus Vinicius Couto, Marco Tulio Valente and
Eduardo Figueiredo. Extracting Software Product
Lines: A Case Study Using Conditional Compilation.

PS10 2011 Other Proceedings of the 2011 15th European Conference on
Software Maintenance and Reengineering, CSMR’11,
pages 191-200, Washington, DC, USA. IEEE
Computer Society.

BIBLIOGRAPHY

[ADMTH09] Bram Adams, Wolfgang De Meuter, Herman Tromp, and Ahmed E. Has-

san. Can we refactor conditional compilation into aspects? In Proceedings

of the 8th ACM international conference on Aspect-oriented software de-

velopment, AOSD ’09, pages 243–254, New York, NY, USA, 2009. ACM.

[AJC+05] Vander Alves, Pedro Matos Jr., Leonardo Cole, Paulo Borba, and Geber

Ramalho. Extracting and Evolving Mobile Games Product Lines. In

Proceedings of the 9th International Software Product Line Conference

(SPLC’05), volume 3714 of LNCS, pages 70–81. Springer-Verlag, Septem-

ber 2005.

[Alv07] Vander Alves. Implementing Software Product Line Adoption Strategies.

PhD thesis, Federal University of Pernambuco, Recife, Brazil, March 2007.

[BC90] Gilad Bracha and William Cook. Mixin-Based Inheritance. In Pro-

ceedings of the European Conference on Object-Oriented Programming

on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA/ECOOP’90), pages 303–311, New York, NY, USA, 1990. ACM

Press.

[Boe86] B Boehm. A spiral model of software development and enhancement.

SIGSOFT Softw. Eng. Notes, 11:14–24, August 1986.

[Bos02] Jan Bosch. Maturity and evolution in software product lines: Approaches,

artefacts and organization. In Proceedings of the Second International Con-

ference on Software Product Lines, SPLC 2, pages 257–271, London, UK,

UK, 2002. Springer-Verlag.

[CN02] Paul Clements and Linda Northrop. Software Product Lines: Practices

and Patterns. Addison-Wesley, 2002.

61

BIBLIOGRAPHY 62

[dABMN+07] Jorge Calmon de Almeida Biolchini, Paula Gomes Mian, Ana Can-

dida Cruz Natali, Tayana Uchôa Conte, and Guilherme Horta Travassos.

Scientific research ontology to support systematic review in software engi-

neering. Adv. Eng. Inform., 21:133–151, April 2007.

[DR11] Prof Christine Dancey and John Reidy. Statistics without Maths for Psy-

chology. Prentice Hall, 5th edition, April 2011.

[DSB05] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product derivation in

software product families: a case study. J. Syst. Softw., 74(2):173–194,

January 2005.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis

of c preprocessor use. IEEE Trans. Softw. Eng., 28:1146–1170, December

2002.

[Fav96] Jean-Marie Favre. Preprocessors from an abstract point of view. In Pro-

ceedings of the 1996 International Conference on Software Maintenance,

ICSM ’96, pages 329–, Washington, DC, USA, 1996. IEEE Computer So-

ciety.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.

Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1st

edition edition, July 1999.

[F.P87] Jr. Brooks F.P. No silver bullet essence and accidents of software engineer-

ing. Computer, 20:10–19, 1987.

[FP98] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rig-

orous and Practical Approach. Course Technology, 2nd edition, February

1998.

[GA01] Critina Gacek and Michalis Anastasopoules. Implementing product line

variabilities. In Proceedings of the 2001 symposium on Software reusability:

putting software reuse in context, SSR ’01, pages 109–117, New York, NY,

USA, 2001. ACM.

[Jar07] Stanislaw Jarzabek. Effective Software Maintenance and Evolution. Auer-

bach Publications, May 2007.

BIBLIOGRAPHY 63

[JBZZ03] Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weishan Zhang. Xvcl:

Xml-based variant configuration language. In Proceedings of the 25th In-

ternational Conference on Software Engineering, ICSE ’03, pages 810–811,

Washington, DC, USA, 2003. IEEE Computer Society.

[Jon86] Caper Jones. Programming Productivity. Mcgraw-Hill, January 1986.

[JV04] Doug Janzen and Kris De Volder. Programming with crosscutting effective

views. In 18th ECOOP, pages 195–218, 2004.

[KA09] Christian Kästner and Sven Apel. Virtual separation of concerns - a second

chance for preprocessors. Journal of Object Technology, 8(6):59–78, 2009.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in

Software Product Lines. In Proceedings of the 30th International Confer-

ence on Software Engineering (ICSE’08), pages 311–320, New York, NY,

USA, 2008. ACM.

[KBS39] M. G. Kendall and B. Babington Smith. The problem of m rankings. The

Annals of Mathematical Statistics, 10(3):275–287, September 1939.

[Kit07] Barbara Kitchenham. Guidelines for Performing Systematic Literature

Reviews in Software Engineering. EBSE Technical Report Version 2.3,

Keele University, UK, July 2007.

[KKHL10] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. Type-

chef: toward type checking #ifdef variability in c. In Proceedings of the

2nd International Workshop on Feature-Oriented Software Development

(FOSD’10), pages 25–32, New York, NY, USA, 2010. ACM.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

oriented programming. In ECOOP, pages 220–242, 1997.

[KMPY05] Ronny Kolb, Dirk Muthig, Thomas Patzke, and Kazuyuki Yamauchi. A

Case Study in Refactoring a Legacy Component for Reuse in a Product

Line. In Proceedings of the 21st International Conference on Software

Maintenance (ICSM’05), pages 369–378, Washington, DC, USA, 2005.

IEEE Computer Society.

BIBLIOGRAPHY 64

[KR88] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-

Hall, 1988.

[Kru02] Charles W. Krueger. Easing the transition to software mass customiza-

tion. In Revised Papers from the 4th International Workshop on Software

Product-Family Engineering, PFE ’01, pages 282–293, London, UK, UK,

2002. Springer-Verlag.

[Kru06] Charles W. Krueger. Introduction to the emerging practice of software

product line development. Practical Knowledge for the Software Developer,

Tester and Project Manager, 4, 2006.

[KS94] Maren Krone and Gregor Snelting. On the inference of configuration struc-

tures from source code. In Proceedings of the 16th international conference

on Software engineering, ICSE ’94, pages 49–57, Los Alamitos, CA, USA,

1994. IEEE Computer Society Press.

[LAL+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and

Michael Schulze. An analysis of the variability in forty preprocessor-based

software product lines. In Proceedings of the 32nd ACM/IEEE Interna-

tional Conference on Software Engineering (ICSE’10), pages 105–114, New

York, NY, USA, 2010. ACM.

[LKA11] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of

preprocessor annotations in 30 million lines of c code. In Proceeding of the

10th International Conference on Aspect Oriented Software Development

(AOSD’11), pages 191–202, New York, NY, USA, March 2011. ACM.

[LSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software

Product Lines in Action: The Best Industrial Practice in Product Line

Engineering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[MCK04] Jonathan I. Maletic, Michael Collard, and Huzefa Kagdi. Leveraging

xml technologies in developing program analysis tools. In in Proceedings

of 4th International Workshop on Adoption-Centric Software Engineering

(ACSE’04, pages 80–85, 2004.

[McM06] Robert McMillan. Intel reissues buggy patch, August 2006.

BIBLIOGRAPHY 65

[McM10] Robert McMillan. After buggy patch, criminals exploit windows flaw.,

June 2010.

[MLWR01] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard.

Separating features in source code: an exploratory study. In Proceedings

of the 23rd International Conference on Software Engineering (ICSE’01),

pages 275–284, Washington, DC, USA, 2001. IEEE Computer Society.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems into

modules. CACM, 15(12):1053–1058, 1972.

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-

uct Line Engineering: Foundations, Principles and Techniques. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[PBvdL05] Klaus Pohl, Gunter Bockle, and Frank J. van der Linden. Software Product

Line Engineering. Springer, 2005.

[PFMM08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-

tematic mapping studies in software engineering. In Proceedings of the 12th

international conference on Evaluation and Assessment in Software Engi-

neering, EASE’08, pages 68–77, Swinton, UK, UK, 2008. British Computer

Society.

[Pig97] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for

Managing Your Software Investment. Wiley, October 1997.

[PO97] T. Troy Pearse and Paul W. Oman. Experiences developing and main-

taining software in a multi-platform environment. In Proceedings of the

International Conference on Software Maintenance, ICSM ’97, pages 270–

, Washington, DC, USA, 1997. IEEE Computer Society.

[RPTB10] Márcio Ribeiro, Humberto Pacheco, Leopoldo Teixeira, and Paulo Borba.

Emergent Feature Modularization. In Onward! 2010, affiliated with ACM

SIGPLAN International Conference on Systems, Programming, Languages

and Applications: Software for Humanity (SPLASH’10), pages 11–18, New

York, NY, USA, 2010. ACM.

[RQB+11] Márcio Ribeiro, Felipe Queiroz, Paulo Borba, Társis Tolêdo, Claus

Brabrand, and Sérgio Soares. On the impact of feature dependencies when

BIBLIOGRAPHY 66

maintaining preprocessor-based software product lines. In Proceedings of

the 10th ACM international conference on Generative programming and

component engineering, GPCE ’11, pages 23–32, New York, NY, USA,

2011. ACM.

[SC92] Henry Spencer and Geoff Collyer. #ifdef considered harmful, or portability

experience with C news. In Proceedings of the Usenix Summer 1992 Tech-

nical Conference, pages 185–198, Berkeley, CA, USA, June 1992. Usenix

Association.

[SGC+03] Claudio Sant’anna, Alessandro Garcia, Christina Chavez, Carlos Lucena,

and Arndt v. von Staa. On the reuse and maintenance of aspect-oriented

software: An assessment framework. In Proceedings XVII Brazilian Sym-

posium on Software Engineering, 2003.

[SJQS09] Andreas Saebjoernsen, Lingxiao Jiang, Daniel Quinlan, and Zhendong Su.

Static validation of c preprocessor macros. In Proceedings of the 2009

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE ’09, pages 149–160, Washington, DC, USA, 2009. IEEE Com-

puter Society.

[SPL03] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing

Legacy Systems: Software Technologies, Engineering Processes, and Busi-

ness Practices. Addison-Wesley, February 2003.

[STL10] Julio Sincero, Reinhard Tartler, and Daniel Lohmann. An Algorithm for

Quantifying the Program Variability Induced by Conditional Compilation.

Technical report, University of Erlangen,Dept. of Computer Science, Jan-

uary 2010.

[STLSP10] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schröder-

Preikschat. Efficient extraction and analysis of preprocessor-based vari-

ability. SIGPLAN Not., 46(2):33–42, October 2010.

[TBD06] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature refactoring a

multi-representation program into a product line. In Proceedings of the

5th International Conference on Generative Programming and Component

Engineering (GPCE’06), pages 191–200, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 67

[tio12] Tiobe software. http://www.tiobe.com/index.php/content/paperinfo/tpci

/index.html, May 2012.

